Chernobyl-Soul - лучший сайт, посвященный Чернобыльской Зоне отчуждения.
Здесь ты найдёшь интересную ФРПГ, захватывающую браузерную игру, форумные группировки, файлы, арты по игре S.T.A.L.K.E.R., собеседника по душе и ещё много всего.
Наслаждайся!
Правила форума
Самое главное - уважай других пользователей! Остальные правила доступны здесь, обязательно ознакомься с ними.
Это место закрыто от глаз сторонних сталкеров. Здесь проводятся опыты и эксперименты. Именно в таких полевых лабораториях и появляются на свет новейшие разработки учёных. Работа здесь кипит не переставая.
В теме запрещается: 1) Выкладывать посты не содержащие ни какой информации. 2) Писать фулд и флейм. 3) Свободно общаться (Писать только по теме!!!) 4) Пользоваться прикреплением картинок. ( Выкладываем через РАДИКАЛ или иные ресурсы) 5) Повторять информацию. 6) Спорить с другими учёными.
За НАРУЩЕНИЕ привал следует наказание!!!!
(Эта тема для сбора всей информации в Зоны. Сюда выкладывается заявления о проделанной работе, определённые рефераты и научные труду.)
Сообщение отредактировал Форт(Омон) - Ср, 27.01.10, 18:11:42
Приехав из командировки, выкладываю информацию которую получил с помощью приборов
Статистика свидетельствует о том, что в настоящее время рак щитовидной железы является начальной стадией развития рака, которая напрямую может быть связана с аварией на Чернобыльской станции. Тем не менее, другие формы рака смогут проявиться не ранее, чем через десять лет после катастрофы и это может произойти в течение пятнадцати — двадцати лет. В результате развития этих заболеваний будет очень трудно подтвердить, что они являются следствием облучения организма человека после аварии на Чернобыльской АЭС. Медицина не настолько сильна, чтобы сделать вывод, был ли вызван рак облучением или другими причинами.
Исследования, проведенные недавно, свидетельствуют о том, что в организме людей, которые были детьми к моменту аварии, стали развиваться твердые антитела, которые не в состоянии отличить ткани организма от инородных и, которые поражают щитовидную железу, что может привести к гипотиреозу — снижению ее активности. Были обследованы молодые люди из двух населенных пунктов, один из которых подвергся значительному радиационному загрязнению, а во втором уровень радиации отмечен как незначительный. В ходе обследования не было выявлено значительных отличий в функционировании щитовидной железы, однако в первом случае вероятность развития антител, поражающих щитовидную железу, в пять раз превышала этот показатель у молодых людей из другого населенного пункта.
Когда мы все попадем в тюрьму за скачивание музыки, надеюсь, нас рассадят по жанрам...
Счётчик Ге́йгера, счётчик Ге́йгера—Мю́ллера — газоразрядный прибор для автоматического подсчёта числа попавших в него ионизирующих частиц. Представляет собой газонаполненный конденсатор, который пробивается при пролёте ионизирующей частицы через объём газа.
Дополнительная электронная схема обеспечивает счётчик питанием (как правило, не менее 300 V), обеспечивает, при необходимости, гашение разряда и подсчитывает количество разрядов через счётчик.
Счётчики Гейгера разделяются на несамогасящиеся и самогасящиеся (не требующие внешней схемы прекращения разряда).
Чувствительность счётчика определяется составом газа, его объёмом и материалом (и толщиной) его стенок.
В бытовых дозиметрах и радиометрах производства СССР и России обычно применяются 400-вольтовые счётчики:
* «СБМ-20» (по размерам — чуть толще карандаша), СБМ-21 (как сигаретный фильтр, оба со стальным корпусом, пригодный для жёсткого β- и γ-излучений) * «СИ-8Б» (со слюдяным окном в корпусе, пригоден для измерения мягкого β-излучения)
Широкое применение счетчика Гейгера — Мюллера объясняется высокой чувствительностью, возможностью регистрировать разного рода излучения, сравнительной простотой и дешевизной установки. Счетчик был изобретен в 1908 году Гейгером и усовершенствован Мюллером.
Цилиндрический счетчик Гейгера — Мюллера состоит из металлической трубки или металлизированной изнутри стеклянной трубки и тонкой металлической нити, натянутой по оси цилиндра. Нить служит анодом, трубка — катодом. Трубка заполняется разреженным газом, в большинстве случаев используют благородные газы аргон и неон. Между катодом и анодом создается напряжение порядка 1500 В.
Работа счетчика основана на ударной ионизации. Гамма — кванты, испускаемые радиоактивным изотопом, попадая на стенки счетчика, выбивают из него электроны. Электроны, двигаясь в газе и сталкиваясь с атомами газа, выбивают из атомов электроны и создают положительные ионы и свободные электроны. Электрическое поле между катодом и анодом ускоряет электроны до энергий, при которых начинается ударная ионизация. Возникает лавина ионов, и ток через счетчик резко возрастает. При этом на сопротивлении R образуется импульс напряжения, который подается в регистрирующее устройство. Чтобы счетчик смог регистрировать следующую попавшую в него частицу, лавинный заряд нужно погасить. Это происходит автоматически. В момент появления импульса тока на сопротивлении R возникает большое падение напряжения, поэтому напряжение между анодом и катодом резко уменьшается и настолько, что разряд прекращается, и счетчик снова готов к работе.
Важной характеристикой счетчика является его эффективность. Не все гамма-фотоны, попавшие на счетчик, дадут вторичные электроны и будут зарегистрированы, так как акты взаимодействия гамма- лучей с веществом сравнительно редки, и часть вторичных электронов поглощается в стенках прибора, не достигнув газового объема
Эффективность счетчика зависит от толщины стенок счетчика, их материала и энергии гамма — излучения. Наибольшей эффективностью обладают счетчики, стенки которых сделаны из материала с большим атомным номером Z , так как при этом увеличивается образование вторичных электронов. Кроме того, стенки счетчика должны быть достаточно толстыми. Толщина стенки счетчика выбирается из условия ее равенства длине свободного пробега вторичных электронов в материале стенки. При большой толщине стенки вторичные электроны не пройдут в рабочий объем счетчика и возникновение импульса тока не произойдет . Так как гамма-излучение слабо взаимодействует с веществом, то обычно эффективность гамма — счетчиков также мала и составляет всего 1-2 %. Другим недостатком счетчика Гейгера — Мюллера является то, что он не дает возможность идентифицировать частицы и определять их энергию. Эти недостатки отсутствуют в сцинтилляционных счетчиках.
Сообщение отредактировал Сварог - Чт, 04.02.10, 07:26:20
Мой доклад на тему: Артефакт Артефа́кт (от лат. artefactum — искусственно сделанное) — явление, процесс, предмет, свойство предмета или процесса, появление которого в наблюдаемых условиях по естественным причинам невозможно или маловероятно. Появление артефакта, следовательно, является признаком целенаправленного вмешательства в наблюдаемый процесс, либо наличия неких неучтённых факторов.
Термин употребляется в несколько разных смыслах в различных областях:
* артефакт — рукотворный предмет, изучаемый археологией; * артефакт в любом научном эксперименте — экспериментальный результат (или отклонение экспериментального результата, обладающее свойствами стабильности и воспроизводимости), причиной появления которого является влияние средств проведения эксперимента на изучаемый процесс, дефекты методики, влияние субъективного фактора (внушение или самовнушение испытуемого или экспериментатора); * артефакт в обработке и воспроизведении сигналов (оптика, связь, аудиозапись, фотография, видеозапись) — воспроизводимый при определённых условиях дефект, шум в сигнале, изображении, звукозаписи, причиной которого являются систематические помехи или особенности используемых технических средств; * артефакт в компьютерной графике — нежелательные особенности сгенерированного компьютером изображения, появляющиеся в определённых условиях (переходы яркости или цветности, движение изображения, режимы вывода, предназначенные для ускорения работы, недостаточно качественная компрессия текстур и так далее). Внешне могут выглядеть как муар, искажения цветов, негладкие линии, несовместное движение частей изображения, зазоры между полигонами и прочее. Достаточно распространены артефакты сжатия; * артефакт в документалистике — шумовой элемент на документе, возможно, не созданный специально (пятна, случайные черты) и не являющийся частью документа, но делающий его уникальным; * артефакт культуры — искусственно созданный объект, имеющий знаковое или символическое содержание. Артефактами культуры могут быть созданные людьми предметы, вещи, а также феномены духовной жизни общества: научные теории, суеверия, произведения искусства и фольклор; * артефакт клиники — особые поведенческие нарушения, возникающие у пациентов психиатрических клиник как реакция на новую, стрессогенную ситуацию, в которую они попадают (часто принудительная госпитализация, отсутствие осмысленных занятий, ограничение социальных контактов и пр.). Они накладываются на основную симптоматику, затрудняя тем самым текущий диагноз. В значительной степени артефакты клиники могут быть сглажены при организации трудотерапии и групповых форм занятий для пациентов; * артефакт в теории искусства — претендент на звание художественного произведения; * артефакт в фантастике — уникальный предмет, имеющий свою историю и особенности (магические, если жанр — фэнтези); * артефакт в компьютерных играх — редкий, уникальный предмет, дающий игроку весомые игровые преимущества (особенно распространено в играх с ролевыми элементами и онлайн-играх, например, WarCraft, в частности см. статью Артефакты в DotA-Allstars). * артефакт в математике — уникальная формула.
Генетическая инжене́рия (генная инженерия) — совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы.
Генетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, цитология, генетика, микробиология, вирусология.
Применение в научных исследованиях
Нокаут гена. Для изучения функции того или иного гена может быть применен нокаут гена (gene knockout). Так называется техника удаления одного или большего количества генов, что позволяет исследовать последствия подобной мутации. Для нокаута синтезируют такой же ген или его фрагмент, изменённый так, чтобы продукт гена потерял свою функцию. Для получения нокаутных мышей полученную генно-инженерную конструкцию вводят в эмбриональные стволовые клетки, где конструкция подвергается соматической рекомбинации и замещает нормальный ген, а измененные клетки имплантируют в бластоцист суррогатной матери. У плодовой мушки дрозофилы мутации инициируют в большой популяции, в которой затем ищут потомство с нужной мутацией. Сходным способом получают нокаут у растений и микроорганизмов.
Искусственная экспрессия. Логичным дополнением нокаута является искусственная экспрессия, то есть добавление в организм гена, которого у него ранее не было. Этот способ генной инженерии также можно использовать для исследования функции генов. В сущности процесс введения дополнительных генов таков же, как и при нокауте, но существующие гены не замещаются и не повреждаются. Схема строения зелёного флуоресцентного белка.
Визуализация продуктов генов. Используется, когда задачей является изучение локализации продукта гена. Одним из способов мечения является замещение нормального гена на слитый с репортёрным элементом, например, с геном зелёного флуоресцентного белка (GFP). Этот белок, флуоресцирующий в голубом свете, используется для визуализации продукта генной модификации. Хотя такая техника удобна и полезна, ее побочными следствиями может быть частичная или полная потеря функции исследуемого белка. Более изощрённым, хотя и не столь удобным методом является добавление к изучаемому белку не столь больших олигопептидов, которые могут быть обнаружены с помощью специфических антител.
Исследование механизма экспрессии. В таких экспериментах задачей является изучение условий экспрессии гена. Особенности экспрессии зависят прежде всего от небольшого участка ДНК, расположенного перед кодирующей областью, который называется промотор и служит для связывания факторов транскрипции. Этот участок вводят в организм, поставив после него вместо собственного гена репортерный, например, GFP или фермента, катализирующего легко обнаруживаемую реакцию. Кроме того, что функционирование промотора в тех или иных тканях в тот или иной момент становится хорошо заметным, такие эксперименты позволяют исследовать структуру промотора, убирая или добавляя к нему фрагменты ДНК, а также искусственно усиливать его функции.
Ионизирующее излучение — в самом общем смысле — различные виды микрочастиц и физических полей, способные ионизировать вещество. В более узком смысле к ионизирующему излучению не относят ультрафиолетовое излучение и излучение видимого диапазона света, которое в отдельных случаях также может быть ионизирующим. Излучение микроволнового и радиодиапазонов не является ионизирующим. Наиболее значимы следующие типы ионизирующего излучения: коротковолновое электромагнитное излучение (рентгеновское и гамма-излучения), потоки заряженных частиц: бета-частиц (электронов и позитронов), альфа-частиц (ядер атома гелия-4), протонов, других ионов, мюонов и др., а также нейтронов. В природе ионизирующее излучение обычно генерируется в результате спонтанного радиоактивного распада радионуклидов, ядерных реакций (синтез и индуцированное деление ядер, захват протонов, нейтронов, альфа-частиц и др.), а также при ускорении заряженных частиц в космосе (природа такого ускорения космических частиц до конца не ясна). Искусственными источниками ионизирующего излучения являются искусственные радионуклиды (генерируют альфа-, бета- и гамма-излучения), ядерные реакторы (генерируют главным образом нейтронное и гамма-излучение), радионуклидные нейтронные источники, ускорители элементарных частиц (генерируют потоки заряженных частиц, а также тормозное фотонное излучение), рентгеновские аппараты (генерируют тормозное рентгеновское излучение). Физические свойства ионизирующих излучений: По механизму взаимодействия с веществом выделяют непосредственно потоки заряженных частиц и косвенно ионизирующее излучение (потоки нейтральных элементарных частиц — фотонов и нейтронов). По механизму образования — первичное (рождённое в источнике) и вторичное (образованное в результате взаимодействия излучения другого типа с веществом) ионизирующее излучение. Энергия частиц ионизирующего излучения лежит в диапазоне от нескольких сотен электронвольт (рентгеновское излучение, бета-излучение некоторых радионуклидов) до 1015 — 1020 и выше электрон-вольт (протоны космического излучения, для которых не обнаружено верхнего предела по энергии). В зависимости от типа частиц и их энергии сильно различаются длина пробега и проникающая способность ионизирующего излучения — от долей миллиметра в конденсированной среде (альфа-излучение радионуклидов, осколки деления) до многих километров (высокоэнергетические мюоны космических лучей). Важными показателями взаимодействия ионизирующего излучения с веществом служат такие величины, как линейная передача энергии (ЛПЭ), показывающая, какую энергию излучение передаёт среде на единице длины пробега при единичной плотности вещества, а также поглощённая доза излучения, показывающая, какая энергия излучения поглощается в единице массы вещества. В Международной системе единиц (СИ) единицей поглощённой дозы является грэй (Гр), численно равный отношению 1 Дж к 1 кг. Ранее широко применялась также экспозиционная доза излучения — величина, показывающая, какой заряд создаёт фотонное (гамма- или рентгеновское) излучение в единице объёма воздуха. Наиболее часто применяющейся единицей экспозиционной дозы был рентген (Р), численно равный 1 СГСЭ-единицы заряда к 1 см³ воздуха. Биологическое действие ионизирующих излучений: Ионизация, создаваемая излучением в клетках, приводит к образованию свободных радикалов. Свободные радикалы вызывают разрушения целостности цепочек макромолекул (белков и нуклеиновых кислот), что может привести как к массовой гибели клеток, так и канцерогенезу и мутагенезу. Наиболее подвержены воздействию ионизирующего излучения активно делящиеся (эпителиальные, стволовые, также эмбриональные) клетки. Из-за того, что разные типы ионизирующего излучения обладают разной ЛПЭ, одной и той же поглощённой дозе соответствует разная биологическая эффективность излучения. Поэтому для описания воздействия излучения на живые организмы вводят понятия относительной биологической эффективности (коэффициента качества) излучения по отношению к излучению с низкой ЛПЭ (коэффициент качества фотонного и электронного излучения принимают за единицу) и эквивалентной дозы ионизирующего излучения, численно равной произведению поглощённой дозы на коэффициент качества. После действия излучения на организм в зависимости от дозы могут возникнуть детерминированные и стохастические радиобиологические эффекты. Например, порог появления симптомов острой лучевой болезни у человека составляет 1—2 Зв на всё тело. В отличие от детерминированных, стохастические эффекты не имеют чёткого дозового порога проявления. С увеличением дозы облучения возрастает лишь частота проявления этих эффектов. Проявиться они могут как спустя много лет после облучения (злокачественные новообразования), так и в последующих поколениях (мутации). Применение ионизирующих излучений: Ионизирующие излучения применяются в различных отраслях тяжёлой (интроскопия) и пищевой (стерилизация медицинских инструментов, расходных материалов и продуктов питания) промышленности, а также в медицине (лучевая терапия, ПЭТ-томография). Для лечения опухолей используют тяжёлые ядерные частицы такие как протоны, тяжёлые ионы, отрицательные π-мезоны и нейтроны разных энергий. Создаваемые на ускорителях пучки тяжёлых заряжённых частиц имеют малое боковое рассеяние, что дает возможность формировать дозные поля с чётким контуром по границам опухоли. Интересные факты: Свинец - лучший поглотитель гамма-излучения (начальной радиации, состоящей в основном из гамма лучей). Он поглощает радиацию в 3 раза эффективнее чем сталь. Быстрые нейтроны предварительно замедляются с помощью графита. Медленные нейтроны хорошо поглощаются изотопом бора 10В и кадмием.
Мутация (лат. mutatio — изменение) — стойкое (то есть такое, которое может быть унаследовано потомками данной клетки или организма) изменение генотипа, происходящее под влиянием внешней или внутренней среды. Процесс возникновения мутаций получил название мутагенеза.
Мутации делятся на спонтанные и индуцированные. Спонтанные мутации возникают самопроизвольно на протяжении всей жизни организма в нормальных для него условиях окружающей среды с частотой около 10 − 9 — 10 − 12 на нуклеотид за клеточную генерацию.
Индуцированными мутациями называют наследуемые изменения генома, возникающие в результате тех или иных мутагенных воздействий в искусственных (экспериментальных) условиях или при неблагоприятных воздействиях окружающей среды.
Мутации появляются постоянно в ходе процессов, происходящих в живой клетке. Основные процессы, приводящие к возникновению мутаций — репликация ДНК, нарушения репарации ДНК и генетическая рекомбинация.
Существуют факторы, способные заметно увеличить частоту мутаций — мутагенные факторы. К ним относятся: 1)химические мутагены — вещества, вызывающие мутации, 2)физические мутагены — ионизирующие излучения, в том числе естественного радиационного фона, ультрафиолетовое излучение, высокая температура и др., 3)биологические мутагены — например, ретровирусы, ретротранспозоны.
Классификации мутаций Существует несколько классификаций мутаций по различным критериям. Мёллер предложил делить мутации по характеру изменения функционирования гена на гипоморфные (измененные аллели действуют в том же направлении, что и аллели дикого типа; синтезируется лишь меньше белкового продукта), аморфные (мутация выглядит, как полная потеря функции гена, например, мутация white у Drosophila), антиморфные (мутантный признак изменяется, например, окраска зерна кукурузы меняется с пурпурной на бурую) и неоморфные.
В современной учебной литературе используется и более формальная классификация, основанная на характере изменения структуры отдельных генов, хромосом и генома в целом. В рамках этой классификации различают следующие виды мутаций: геномные; хромосомные; генные.
Геномные: — полиплоидизация (образование организмов или клеток, геном которых представлен более чем двумя (3n, 4n, 6n и т. д.) наборами хромосом) и анеуплоидия (гетероплоидия) — изменение числа хромосом, не кратное гаплоидному набору (см. Инге-Вечтомов, 1989). В зависимости от происхождения хромосомных наборов среди полиплоидов различают аллополиплоидов, у которых имеются наборы хромосом, полученные при гибридизации от разных видов, и аутополиплоидов, у которых происходит увеличение числа наборов хромосом собственного генома, кратное n.
При хромосомных мутациях происходят крупные перестройки структуры отдельных хромосом. В этом случае наблюдаются потеря (делеция) или удвоение части (дупликация) генетического материала одной или нескольких хромосом, изменение ориентации сегментов хромосом в отдельных хромосомах (инверсия), а также перенос части генетического материала с одной хромосомы на другую (транслокация) (крайний случай — объединение целых хромосом, т. н. Робертсоновская транслокация, которая является переходным вариантом от хромосомной мутации к геномной).
На генном уровне изменения первичной структуры ДНК генов под действием мутаций менее значительны, чем при хромосомных мутациях, однако генные мутации встречаются более часто. В результате генных мутаций происходят замены, делеции и вставки одного или нескольких нуклеотидов, транслокации, дупликации и инверсии различных частей гена. В том случае, когда под действием мутации изменяется лишь один нуклеотид, говорят о точковых мутациях. Поскольку в состав ДНК входят азотистые основания только двух типов — пурины и пиримидины, все точковые мутации с заменой оснований разделяют на два класса: транзиции (замена пурина на пурин или пиримидина на пиримидин) и трансверсии (замена пурина на пиримидин или наоборот). Возможны четыре генетических последствия точковых мутаций: 1) сохранение смысла кодона из-за вырожденности генетического кода (синонимическая замена нуклеотида), 2) изменение смысла кодона, приводящее к замене аминокислоты в соответствующем месте полипептидной цепи (миссенс-мутация), 3) образование бессмысленного кодона с преждевременной терминацией (нонсенс-мутация). В генетическом коде имеются три бессмысленных кодона: амбер — UAG, охр — UAA и опал — UGA (в соответствии с этим получают название и мутации, приводящие к образованию бессмысленных триплетов — например амбер-мутация), 4) обратная замена (стоп-кодона на смысловой кодон).
По влиянию на экспрессию генов мутации разделяют на две категории: мутации типа замен пар оснований и типа сдвига рамки считывания (frameshift). Последние представляют собой делеции или вставки нуклеотидов, число которых не кратно трём, что связано с триплетностью генетического кода.
Первичную мутацию иногда называют прямой мутацией, а мутацию, восстанавливающую исходную структуру гена, — обратной мутацией, или реверсией. Возврат к исходному фенотипу у мутантного организма вследствие восстановления функции мутантного гена нередко происходит не за счет истинной реверсии, а вследствие мутации в другой части того же самого гена или даже другого неаллельного гена. В этом случае возвратную мутацию называют супрессорной. Генетические механизмы, благодаря которым происходит супрессия мутантного фенотипа, весьма разнообразны.
Роль мутаций в эволюции При существенном изменении условий существования те мутации, которые раньше были вредными, могут оказаться полезными. Таким образом, мутации являются материалом для естественного отбора. Так, мутанты-меланисты (темноокрашенные особи) в популяциях березовой пяденицы в Англии впервые были обнаружены учеными среди типичных светлых особей в середине XIX века. Темная окраска возникает в результате мутации одного гена. Бабочки проводят день на стволах и ветвях деревьев, обычно покрытых лишайниками, на фоне которых светлая окраска является маскирующей. В результате промышленной революции, сопровождающейся загрязнением атмосферы, лишайники погибли, а светлые стволы берез покрылись копотью. В результате к середине XX века (за 50-100 поколений) в промышленных районах темная морфа почти полностью вытеснила светлую. Было показано, что главная причина преимущественного выживания черной формы — хищничество птиц, которые избирательно выедали светлых бабочек в загрязненных районах.
Если мутация затрагивает «молчащие» участки ДНК, либо приводит к замене одного элемента генетического кода на синонимичный, то она обычно никак не проявляется в фенотипе (проявление такой синонимичной замены может быть связано с разной частотой употребления кодонов). Однако методами генного анализа такие мутации можно обнаружить. Поскольку чаще всего мутации происходят в результате естественных причин, то в предположении, что основные свойства внешней среды не менялись, получается, что частота мутаций должна быть примерно постоянной. Этот факт можно использовать для исследования филогении — изучения происхождения и родственных связей различных таксонов, в том числе и человека. Таким образом, мутации в молчащих генах служат для исследователей своеобразными «молекулярными часами». Теория «молекулярных часов» исходит также из того, что большинство мутаций нейтральны, и скорость их накопления в данном гене не зависит или слабо зависит от действия естественного отбора и потому остается постоянной в течение длительного времени. Для разных генов эта скорость, тем не менее, будет различаться.
Исследование мутаций в митохондриальной ДНК (наследуется по материнской линии) и в Y-хромосомах (наследуется по отцовской линии) широко используется в эволюционной биологии для изучения происхождения рас и народностей, реконструкции биологического развития человечества.
Энергия, которая требуется, чтобы разделить ядро на отдельные нуклоны, называется энергией связи. Энергия связи, приходящаяся на один нуклон, неодинакова для разных химических элементов и, даже, изотопов одного и того же химического элемента. Удельная энергия связи нуклона в ядре колеблется, в среднем, в пределах от 1 МэВ у лёгких ядер (дейтерий) до 8,6 МэВ, у ядер среднего веса (А≈100). У тяжёлых ядер (А≈200) удельная энергия связи нуклона меньше, чем у ядер среднего веса, приблизительно на 1 МэВ, так что их превращение в ядра среднего веса (деление на 2 части) сопровождается выделением энергии в количестве около 1 МэВ на нуклон, или около 200 МэВ на ядро. Превращение лёгких ядер в более тяжёлые даёт ещё больший энергетический выигрыш в расчёте на нуклон. Так, например, реакция соединения дейтерия и трития
1D²+1T³→2He4+0n1
сопровождается выделением энергии 17,6 МэВ, т.е. 3,5 МэВ на нуклон.
Высвобождение ядерной энергии
Известны экзотермические ядерные реакции, высвобождающие ядерную энергию.
Обычно для получения ядерной энергии используют цепную ядерную реакцию деления ядер урана-235 или плутония. Ядра делятся при попадании в них нейтрона, при этом получаются новые нейтроны и осколки деления. Нейтроны деления и осколки деления обладают большой кинетической энергией. В результате столкновений осколков с другими атомами эта кинетическая энергия быстро преобразуется в тепло.
Другим способом высвобождения ядерной энергии является термоядерный синтез. При этом два ядра лёгких элементов соединяются в одно тяжёлое. Такие процессы происходят на Солнце.
Многие атомные ядра являются неустойчивыми. С течением времени часть таких ядер самопроизвольно превращаются в другие ядра, высвобождая энергию. Такое явление называют радиоактивным распадом.
Применение ядерной энергии
Энергия деления ядер урана или плутония применяется в ядерном и термоядерном оружии (как пускатель термоядерной реакции). Существовали экспериментальные ядерные ракетные двигатели, но испытывались они исключительно на Земле и в контролируемых условиях, по причине опасности радиоактивного загрязнения в случае аварии. На атомных электрических станциях ядерная энергия используется для получения тепла, используемого для выработки электроэнергии и отопления. Ядерные силовые установки решили проблему судов с неограниченным районом плавания (атомные ледоколы, атомные подводные лодки, атомные авианосцы). В условиях дефицита энергетических ресурсов ядерная энергетика считается наиболее перспективной в ближайшие десятилетия.
Энергия термоядерного синтеза применяется в водородной бомбе.
Энергия, выделяемая при радиоактивном распаде, используется в долгоживущих источниках тепла и бетагальванических элементах. Автоматические межпланетные станции типа «Пионер» и «Вояджер» используют радиоизотопные термоэлектрические генераторы. Изотопный источник тепла использовал советский Луноход-1.
Микробиология — наука о живых организмах, невидимых невооруженным глазом (микроорганизмах): бактерии, архебактерии, микроскопические грибы и водоросли, часто этот список продляют простейшими и вирусами. В область интересов микробиологии входит их систематика, морфология, физиология, биохимия, эволюция, роль в экосистемах а также возможности практического использования. Разделы микробиологии: бактериология, микология, вирусология и т. д.
Донаучный этап развития
Люди издревле имели представление о множестве микробиологических процессов, однако не знали вызывающих их истинных причин. Это не мешало делать наблюдения и даже использовать ряд этих процессов в быту. Ряд философов и естествоиспытателей делали умозрительные заключения о причинах тех или иных явлений. При этом наиболее близко к открытию микромира подошел Джироламо Фракасторо (1478—1553), предположивший что инфекции вызывают маленькие тельца, передающиеся при контакте и сохраняющиеся на вещах больного. Однако в то время невозможно было удостовериться в правильности его идей и распространение получили совершенно иные гипотезы. Бактериальную природу инфекционных заболеваний многие учёные продолжали отвергать и после революционных открытий Пастера и Коха (см. ниже): так, в 1892 Макс Петтенкофер, уверенный в том что холеру вызывают миазмы, выделяемые окружающей средой, и пытаясь доказать свою правоту, проглотил при свидетелях-медиках культуру холерных вибрионов и не заболел.
Описательный этап
Возможность изучения микроорганизмов возникла лишь с развитием оптических приборов. Первый микроскоп был создан ещё в 1610 году Галилеем. В 1665 Роберт Гук впервые увидел растительные клетки. Однако 30 кратного увеличения его микроскопа не хватило чтобы увидеть простейших и тем более бактерии. По мнению В. Л. Омельянского «первым исследователем, перед изумлённым взором которого открылся … мир микроорганизмов, был учёный иезуит Афанасий Кирхер (1601—1680), автор ряда сочинений астрологического характера», однако обычно первооткрывателем микромира называют Антони ван Левенгука. В своём письме Лондонскому Королевскому обществу он сообщает как 24 апреля 1676 года микроскопировал каплю воды и даёт описание увиденных там существ, в том числе бактерий. Левенгук считал обнаруженных им микроскопических существ «очень маленькими животными» и приписывал им те же особенности строения и поведения, что и обычным животным. Повсеместное распространение этих «животных» стало сенсацией не только в научном мире. Левенгук демонстрировал свои опыты всем желающим, в 1698 году его даже посетил Пётр I. Между тем, наука в целом ещё не была готова к пониманию роли микроорганизмов в природе. Система теорий возникла тогда лишь в физике. Во времена Левенгука отсутствовали представления о ключевых процессах живой природы, так, незадолго до него в 1648 году Ван Гельмонт, не имея никакого понятия о фотосинтезе, заключил из своего опыта с ивой, что растение берёт питание только из дистиллированной воды, которой он его поливал. Более того, даже неживая материя ещё не была достаточно изучена, состав атмосферы, необходимый для понимания того же фотосинтеза, будет определён лишь в 1766—1776. Поэтому неудивительно что «животным» Левенгука не нашлось место нигде, кроме как в коллекции курьёзов. В течение следующих 100—150 лет развитие микробиологии проходило лишь с описанием новых видов. Видную роль в изучении многообразия микроорганизмов сыграл Отто Фридрих Мюллер, который к 1789 описал и назвал по линнеевской биномиальной номенклатуре 379 различных видов. В это время было сделано и несколько интересных открытий. Так, в 1823 была определена причина «кровоточения» просфор — бактерия, названная Serratia marcescens (другое название Monas prodigiosa). Также следует отметить Христиана Готтфрида Эренберга, описавшего множество пигментированных бактерий, первые железобактерии, а также скелеты простейших и диатомовых водорослей в морских и лиманных отложениях, чем положил начало микропалеонтологии. Именно он впервые объяснил окраску воды Красного моря развитием в ней цианобактерий Trichodesmium erythraeum. Он, однако, причислял бактерий к простейшим и рассматривал их вслед за Левенгуком как полноценных животных с желудком, кишечником и конечностями. В России одним из первых микробиологов был Л. С. Ценковский (1822—1887), описавший большое число простейших, водорослей и грибов и сделавший вывод об отсутствии резкой границы между растениями и животными. Им также была организована одна из первых Пастеровских станций и предложена вакцина против сибирской язвы. Высказывались в это время и смелые гипотезы, например врач-эпидемиолог Д. С. Самойлович (1744—1801) был убеждён в том что болезни вызываются именно микроорганизмами, однако тщетно пытался увидеть в микроскоп возбудитель чумы - возможности оптики тогда ещё не позволяли это сделать. В 1827 итальянец А. Басси обнаружил передачу болезни шелковичного червя при переносе микроскопического гриба. Ж. Л. Л. Бюффон и А. Л. Лавуазье связывали брожение с дрожжами, однако общепринятой оставалась чисто химическая теория этого процесса, сформулированная в 1697 Г. Э. Шталем. Для спиртового брожения, как для любой реакции, Лавуазье и Л. Ж. Гей-Люссаком были посчитаны стехиометрические соотношения. В 1830-х Ш. Каньяр де Латур, Ф. Кютцинг и Т. Шванн независимо друг от друга наблюдали обилие микроорганизмов в осадке и плёнке на поверхности бродящей жидкости и связали брожение с их развитием. Эти представление наткнулись, однако, на резкую критику со стороны таких видных химиков как Фридрих Вёлер, Йёнс Якоб Берцелиус и Юстус Либих. Последний даже написал анонимную статью «О разгаданной тайне спиртового брожения» (1839) — саркастическую пародию на микробиологические исследования тех лет. Тем не менее, вопрос о причинах брожения, тесно связанный с вопросом о спонтанном самозарождении жизни, стал первым успешно решённым вопросом о роли микроорганизмов в природе.
Споры о самозарождении и брожении
Средние века были временем господства идей Аристотеля, что означало также и признание его теорий зарождения двоякодышащих рыб из ила, насекомых из экскрементов или капель росы на листьях. Первые эксперименты, опровергающие представления Аристотеля поставил тосканский придворный медик Франческо Реди (1626—1697). Общий его принцип - наблюдение за питательным веществом в открытом, куда возможно попадание живых организмов, и в каким-либо образом закрытом от них, но не от воздуха, сосуде — использовался во всех подобных опытах. Тогда было опровергнуто самозарождение насекомых, но уже в XVIII веке католический священник Джон Турбервилл Нидхем выдвинул гипотезу «жизненной силы», существующей в живых телах и вызывающей при их распаде возникновение микроорганизмов. Против него выступил Ладзаро Спалланцани, показав что нагревание препятствует появлению живых существ в настое растительных и животных волокон, закрытом в сосуде. Тогда Нидхем возразил что воздух, в котором имеют потребность живые существа, теряет свою «жизненную силу» при нагревании.
Франц Шульц после стерилизации сосуда с настоем пускал туда воздух, пропущенный через карболовую кислоту, и не наблюдал развития там микроорганизмов. Чтобы избежать возражений, что кислота тоже лишает воздух жизненной силы, Шрёдер и фон Душ в 1854 году пропускали воздух через хлопковый фильтр, а в 1860 Гофман и независимо от него в 1861 Шевре и Пастер показали, что нет необходимости и в фильтре - достаточно изогнуть соединяющие сосуд с атмосферой трубки, чтобы в нём после стерилизации не «зарождалась» жизнь. Так принцип omne vivum ex vivo (всё живое из живого) окончательно победил в биологии. Используя представления о невозможности самозарождения жизни, Луи Пастер в 1860-х показал что стерилизация делает брожение невозможным, таким образом было доказано участие в нём микроорганизмов. Кроме того, это стало открытием новой формы жизни - анаэробной, не требующей кислорода, а иногда даже гибнущей под его воздействием.
Постепенно складывалось и осознание особого положения микромира в живой природе. В начале XIX века микроорганизмы причислялись к червям. В 1866 Эрнст Геккель впервые выделил их в отдельное царство Protista. Затем Ф. Кон в 1875, изучая синезелёные водоросли, отграничил их от растений и объединил их с бактериями как наиболее простых из существующих организмов. К концу XIX века стало ясно, что протисты, объединяемые по своим микроскопическим размерам, существенно различаются между собой. Они были разделены на «высшие» (простейшие, микроскопические грибы и водоросли, дрожжи) и «низшие» (бактерии и синезелёные водоросли). Лишь в 1930-х после новых открытий в строении клетки Э. Шаттон предложил термины эукариоты и прокариоты. Отсекаются и приписываемые микроорганизмам «уникальные» свойства, одним из которых была способность самозарождаться. Другим был их плеоморфизм, то есть нераспространение на бактерий закона Линнея о постоянстве видов. Её появление было вызвано бедностью внешних форм бактерий при богатстве физиологических и биохимических свойств, отчего и казалось что одна та же бактерия проявляет себя по-разному. Особую роль в опровержении этой теории также сыграл Кон.
Золотой век микробиологии
1880-е и 1890-е ознаменовались для микробиологии всплеском числа открытий. Во многом это было связано с подробной разработкой методологии. Прежде всего здесь следует отметить вклад Роберта Коха, создавшем в конце 1870-х — начале 1880-х ряд новых методов и общих принципов ведения исследовательской работы. Пастер использовал для выращивания микроорганизмов жидкие среды, содержащие все элементы, находимые в живых организмах. Жидкие среды, однако, были недостаточно удобны. Так, сложно было выделить колонию, происходящую от одной живой клетки («чистая культура»), в связи с чем можно было изучать только обогащённые самой природой культуры. Лишь в 1883 Э. Христианом Гансеном была получена первая чистая культура дрожжей, полученная методом висячей капли. Твёрдые среды впервые использовались для изучения грибов, где необходимость чистых культур также была обоснована. Для бактерий твёрдые среды применял Кон во Вроцлаве зимой 1868/69 годов, однако только в 1881 Роберт Кох положил начало широкому применению желатиновых и агаровых пластинок. В 1887 году введены в практику чашки Петри. Коху принадлежат также знаменитые постулаты: возбудитель заболевания должен регулярно обнаруживаться у пациента он должен быть выделен в чистую культуру выделенный организм должен вызывать у подопытных животных те же симптомы, что и у больного человека
Эти принципы были приняты не только в медицине, но и в экологии для определения вызывающих те или иные процессы организмов. Также Кох ввёл в применение методы окраски бактерий (ранее использованные в ботанике) и микрофотографию. Публикации Коха содержали в себе методики, принятые микробиологами всего мира. Вслед за ним началось развитие и обогащение методологии, так в 1884 Ганс Христиан Грам использовал метод дифференцирующего окрашивания бактерий (Метод Грама), С. Н. Виноградский в 1891 применил первую элективную среду. За следующие годы было описано больше видов чем за все предыдущее время, выделены возбудители опаснейших заболеваний, обнаружены новые процессы, производимые бактериями и неизвестные в других царствах природы.
Инфекционные заболевания
В изучении жизнедеятельности микроорганизмов следует отметить вклад Луи Пастера (1822—1895). Он же вместе с Робертом Кохом (1843—1910) стоят в истоках учения о микроорганизмах как возбудителях заболеваний.
Экология микроорганизмов
Экологическую роль и многообразие микробиологических процессов показали Бейеринк (1851—1931) и С. Н. Виноградский (1856—1953).
Техническая, или промышленная, микробиология
Техническая микробиология изучает микроорганизмы используемые в производственных процессах с целью получения различных практически важных веществ: пищевых продуктов, этанола, глицерина, ацетона, органических кислот и др.
Огромный вклад в развитие микробиологии внесли русские и советские учёные: И. И. Мечников (1845—1916), Д. И. Ивановский (1863—1920), Н. Ф. Гамалея (1859—1949), Л. С. Ценковский, С. Н. Виноградский, В. Л. Омелянский, Д. К. Заболотный (1866—1929), В. С. Буткевич, С. П. Костычев, Н. Г. Холодный, В. Н. Шапошников, Н. А. Красильников, А. А. Ишменецкий и др.
Большая роль в развитии технической микробиологии принадлежит С. П. Костычеву, С. Л. Иванову и А. И. Лебедеву, которые изучили химизм процесса спиртового брожения, вызываемого дрожжами. На основании исследований химизма образования органических кислот мицелиальными грибами, проведённым В. Н. Костычевым и В. С. Буткевичем, в 1930 году в Ленинграде было организовано производство лимонной кислоты. На основе изучения закономерностей развития молочнокислых бактерий, осуществлённого В. Н. Шапошниковым и А. Я. Мантейфель, в начале 1920-х годов в СССР было организовано производство молочной кислоты, необходимой в медицине для лечения ослабленных и рахитичных детей. В. Н. Шапошников и его ученики разработали технологию получения ацетона и бутилового спирта с помощью бактерий, и в 1934 году в Грозном был пущен первый в СССР завод по выпуску этих растворителей. Труды Я. Я. Никитинского Ф. М. Чистякова положили начало развитию микробиологии консервного производства и холодильного хранения скоропортящихся пищевых продуктов. Благодаря работам А. С. Королёва, А. Ф. Войткевича и их учеников значительное развитие получила микробиология молока и молочных продуктов.
Частью технической микробиологии является пищевая микробиология, изучающая способы получения пищевых продуктов с использованием микроорганизмов. Например, дрожжи применяют в виноделии, пивоварении, хлебопечении, спиртовом производстве; молочнокислые бактерии — в производстве кисломолочных продуктов, сыров, при квашении овощей; уксусно-кислые бактерии — в производстве уксуса; мицелиальные грибы используют для получения лимонной и других пищевых органических кислот и т. д. К настоящему времени выделились специальные разделы пищевой микробиологии : микробиология дрожжевого и хлебопекарного производства, пивоваренного производства, консервного производства, молока и молочных продуктов, уксуса, мясных и рыбных продуктов, маргарина и т. д.
Методы
К методам исследования любых микроорганизмов относят: Метод микроскопии:световая, фазово-контрастная, темнопольная, флуоресцентная, электронная Метод культивирования на питательных средах Метод биопроб на живых организмах Метод полимеразной цепной реакции Реакции по типу «антиген-антитело» Метод ИФА
Связь с другими науками
За время существования микробиологии сформировались общая, техническая, сельскохозяйственная, ветеринарная, медицинская, санитарная ветви. Общая изучает наиболее общие закономерности, свойственные каждой группе перечисленных микроорганизмов: структуру, метаболизм, генетику, экологию и т. д. Техническая занимается разработкой биотехнологии синтеза микроорганизмами биологически активных веществ: белков, нуклеиновых кислот, антибиотиков, спиртов, ферментов, а также редких неорганических соединений. Сельскохозяйственная исследует роль микроорганизмов в круговороте веществ, использует их для синтеза удобрений, борьбы с вредителями. Ветеринарная изучает возбудителей заболеваний животных, методы диагностики, специфической профилактики и этиотропного лечения, направленного на уничтожение возбудителя инфекции в организме больного животного. Медицинская микробиология изучает болезнетворные(патогенные) и условно-патогенные для человека микроорганизмы, а также разрабатывает методы микробиологической диагностики, специфической профилактики и этиотопного лечения вызываемых ими инфекционных заболеваний. Санитарная микробиология изучает санитарно-микробиологическое состояние объектов окружающей среды, пищевых продуктов и напитков, и разрабатывает санитарно-микробиологические нормативы и методы индикации патогенных микроорганизмов в различных объектах и продуктах.
Доклад на тему " Влияние радиоактивного излучения на организм человека"
Основную часть облучения население земного шара получает от естественных источников радиации Большинство из них таковы, что избежать облучения от них совершенно невозможно. Радиационный фон Земли складывается из излучения, обусловленного космическим излучением, и излучения от рассеянных в Земной коре, воздухе, воде, теле человека и других объектах внешней среды природных радионуклидов.
Таким образом, жизнь на Земле возникла и развивалась на фоне ионизирующей радиации. Поэтому биологическое действие её не является каким-то новым раздражителем в пределах естественного радиационного фона. Основной вклад в дозу облучения вносят 40К, 238U, 232Th вместе с продуктами распада урана и тория. В среднем доза фонового (внешнего и внутреннего) облучения человека составляет 1 мЗв/год. В отдельных районах с высоким содержанием природных радионуклидов это значение может достигать 10 мЗв и более. Считают, что часть наследственных изменений и мутаций у животных и растений связана с радиационным фоном. В случае ядерного взрыва на местности возникает очаг ядерного поражения – территория, где факторами массового поражения людей являются световое излучение, проникающая радиация и радиоактивное заражение местности.
В результате поражающего действия светового излучения могут возникнуть массовые ожоги и поражения глаз. Для защиты пригодны различного рода укрытия, а на открытой местности – специальная одежда и очки.
Проникающая радиация представляет собой гамма-лучи и поток нейтронов, исходящих из зоны ядерного взрыва. Они могут распространяться на тысячи метров, проникать в различные среды, вызывая ионизацию атомов и молекул. Проникая в ткани организма, гамма-лучи и нейтроны нарушают биологические процессы и функции органов и тканей, в результате чего развивается лучевая болезнь.
Радиоактивное заражение местности создается за счет адсорбции радиоактивных атомов частицами грунта ( так называемое радиоактивное облако, которое перемещается по направлению движения воздуха ). Основная опасность для людей на зараженной местности – внешнее бета-гаммма-облучение и попадание продуктов ядерного взрыва внутрьорганизма и на кожные покровы.
Ядерные взрывы, выбросы радионуклидов предприятиями ядерной энергетики и широкое использование источников ионизирующих излучений в различных отраслях промышленности, сельском хозяйстве, медицине и научных исследованиях привели к глобальному повышению облучения населения Земли. К естественному облучению прибавились антропогенные источники внешнего и внутреннего облучения.
При ядерных взрывах в окружающую среду поступают радионуклиды деления, наведенной активности и неразделившаяся часть заряда (уран, плутоний). Наведенная активность наступает при захвате нейтронов ядрами атомов элементов, находящихся в конструкции изделия, воздухе, почве и воде. По характеру излучения все радионуклиды деления и наведенной активности относят к b- или b,g-излучателям.
Выпадения подразделяются на местные и глобальные (тропосферные и стратосферные). Местные выпадения, которые могут включать свыше 50% образовавшихся радиоактивных веществ при наземных взрывах, представляют собой крупные аэрозольные частицы, выпадающие на расстоянии около 100 км от места взрыва. Глобальные выпадения обусловлены мелкодисперсными аэрозольными частицами. Наибольшую потенциальную опасность в них представляют такие долгоживущие и биологически опасные радионуклиды как 137Cs и 90Sr.
Радионуклиды, выпавшие на поверхность земли, становятся источником длительного облучения.
Воздействие на человека радиоактивных выпадений включает внешнее g-, b-облучение за счёт радионуклидов, присутствующих в приземном воздухе и выпавших на поверхность земли, контактное в результате загрязнения кожных покровов и одежды и внутреннее от поступивших в организм радионуклидов с вдыхаемым воздухом и загрязнённой пищей и водой. Критическим радионуклидом в начальный период является радиоактивный йод, а в последующем 137Cs и 90Sr.
2. Понятие радиоактивности. Типы излучений.
Радиоактивность – способность некоторых атомных ядер самопроизвольно (спонтанно) превращаться в другие ядра с испусканием различных видов радиоактивных излучений и элементарных частиц.
Радиоактивность подразделяют на естественную (наблюдается у неустойчивых изотопов, существующих в природе) и искусственную (наблюдается у изотопов, полученных посредством ядерных реакций).
Радиоактивное излучение разделяют на три типа:
a-излучение – отклоняется электрическим и магнитными полями, обладает высокой ионизирующей способностью и малой проникающей способностью; представляет собой поток ядер гелия; заряд a-частицы равен +2е, а масса совпадает с массой ядра изотопа гелия 42Не.
b-излучение – отклоняется электрическим и магнитным полями; его ионизирующая способность значительно меньше (приблизительно на два порядка), а проникающая способность гораздо больше, чем у a-частиц; представляет собой поток быстрых электронов.
g-излучение – не отклоняется электрическим и магнитными полями, обладает относительно слабой ионизирующей способностью и очень большой проникающей способностью; представляет собой коротковолновое электромагнитное излучение с чрезвычайно малой длиной волны l < 10-10 м и вследствие этого – ярко выраженными корпускулярными свойствами, то есть является поток частиц - g-квантов (фотонов).
Период полураспада Т1/2 – время, за которое исходное число радиоактивных ядер в среднем уменьшается вдвое.
3. Воздействие радиационного излучения на живые организмы. Существует несколько путей поступления радиоактивных веществ в организм: при вдыхании воздуха, загрязненного радиоактивными веществами, через зараженную пищу или воду, через кожу, а также при заражении открытых ран. Наиболее опасен первый путь, поскольку во-первых, объем легочной вентиляции очень большой, а во-вторых, значения коэффициента усвоения в легких более высоки.
Излучения радиоактивных веществ оказывает очень сильное воздействие на все живые организмы. Даже сравнительно слабое излучение, которое при полном поглощении повышает температуру тела лишь на 0,001 °С, нарушает жизнедеятельность клеток.
При попадании радиоактивных веществ в организм любым путём они уже через несколько минут обнаруживаются в крови. Если поступление радиоактивных веществ было однократным, то концентрация их в крови вначале возрастает до максимуму, а затем в течение 15-20 суток снижается.
В основе повреждающего действия ионизирующих излучений лежит комплекс взаимосвязанных процессов. Ионизация и возбуждение атомов и молекул дают начало образованию высокоактивных радикалов, вступающих в последующем в реакции с различными биологическими структурами клеток. В повреждающем действии радиации важное значение имеют возможный разрыв связей в молекулах за счет непосредственного действия радиации и внутри- и межмолекулярной передачи энергии возбуждения. Физико-химические процессы, протекающие на начальных этапах, принято считать первичными – пусковыми. В последующем развитие лучевого поражения проявляется в нарушении обмена веществ с изменением соответствующих функций органов. Малодифференцированные, молодые и растущие клетки наиболее радиочувствительны.
Животные и растительные организмы характеризуются различной радиочувствительностью, причины которой до сих пор полностью ещё не выяснены. Как правило, наименее чувствительны одноклеточные растения, животные и бактерии, а наиболее чувствительны – млекопитающие животные и человек. Различие в чувствительности к радиации имеет место у отдельных особей одного и того же вида. Она зависит от физиологического состояния организма, условий его существования и индивидуальных особенностей. Более чувствительны к облучению новорожденные и старые особи. Различного рода заболевания, воздействие других вредных факторов отрицательно сказывается на течении радиационных повреждений.
Изменения, развивающиеся в органах и тканях облучённого организма, называют соматическими. Различают ранние соматические эффекты, для которых характерна чёткая дозовая зависимость, и поздние – к которым относят повышение риска развития опухолей (лейкозов), укорочение продолжительности жизни и разного рода нарушения функции органов. Специфических новообразований, присущих только ионизирующей радиации, нет. Существует тесная связь между дозой, выходом опухолей и длительностью латентного периода. С уменьшением дозы частота опухолей падает, а латентный период увеличивается.
В отдалённые сроки могут наблюдаться и генетические (врождённые уродства, нарушения, передающиеся по наследству), повреждения, которые наряду с опухолевыми эффектами являются стохастическими. В основе генетических эффектов облучения лежит повреждение клеточных структур, ведающих наследственностью – половых яичников и семенников.
Промежуточное место между соматическими и генетическими повреждениями занимают эмбриотоксические эффекты - пороки развития – последствия облучения плода. Плод весьма чувствителен облучению, особенно в период органогенеза (на 4-12 неделях беременности у человека). Особенно чувствительным является мозг плода (в этот период происходит формирование коры).
Радиация очень опасна для людей и для последующего потомства. Так, например, вероятность заболеть раком легких на каждую единицу дозы облучения для шахтеров урановых рудников оказалась в 4 7 раз выше, чем для людей, переживших атомную бомбардировку. Следовательно проблема разработки средств защиты от радиации очень актуальна в наше время. И хотя в материалах некоторых обследований содержится вывод о том, что у облученных родителей больше шансов родить ребенка с синдромом дауна, другие исследования этого не подтверждают. Несколько настораживает сообщение о том, что у людей, получающих малые дозы облучения, действительно наблюдается повышенное содержание клеток крови с хромосомными нарушениями.
Согласно оценкам, полученным при первом подходе, доза в 1 Гр., полученная при низком уровне радиации только особями мужского пола, индуцирует появление от 1000 до 2000 мутаций, приводящих к серьезным последствиям, и от 30 до 1000 хромосомных аберраций на каждый миллион живых новорожденных. Оценки, полученные для особей женского пола, гораздо менее определенны, но явно ниже; это объясняется тем, что женские половые клетки менее чувствительны к действию радиации. Согласно ориентировочным оценкам, частота мутаций составляет от 0 до 900, а частота хромосомных аберраций от 0 до 300 случаев на миллион живых новорожденных. 1). Дозы излучения и единицы их измерения.
Эффект облучения зависит от величины поглощенной дозы, её мощности, объёма облученных тканей и органов, вида излучения. Снижение мощности дозы излучения уменьшает биологический эффект. Различия связаны с возможностью восстановления поврежденного облучением организма. С увеличением мощности дозы значимость восстановительных процессов снижается.
Эффект биологического действия излучений зависит также от пространственного распределения поглощённой энергии, которая характеризуется линейной передачей энергии (ЛПЭ), что учитывается при оценке различных видов излучения показателем относительной биологической эффективности (ОБЭ). При этом ОБЭ рентгеновского и g-излучения принимают равной 1.
Доза рентгеновского излучения (180-250 кэВ) вызывающая данный эффект ОБЭ = ______________________________________________________ Поглощённая доза любого другого вида излучения, вызывающая такой же эффект
ОБЭ зависит не только от ЛПЭ излучений, но и от ряда физических и биологических факторов, например, от величины дозы, кратности облучения и др. По предложению Международной комиссии по радиологическим единицам, показатель ОБЭ для оценки различных видов излучения используется только в радиобиолигии. Для решения задач радиационной защиты предложен коэффициент качества излучения k, зависящий от ЛПЭ
В области радиационной безопасности для оценки возможного ущерба здоровью человека при хроническом облучении введено понятие эквивалентной дозы Н, которая равна произведению поглощенной дозы D на средний коэффициент качества ионизирующего излучения k в данном элементе объёма биологической ткани:
При определении эквивалентной дозы ионизирующего излучения используют следующие значения коэффициента качества : Для оценки ущерба здоровью человека при неравномерном облучении введено понятие эффектной эквивалентной дозы Нэфф , применяемый при оценке возможных стохастических эффектов – злокачественных новообразований :
Нэфф = SWTHT
где НТ – среднее значение эквивалентной дозы в органе или ткани; WT – взвешенный коэффициент, равный отношению ущерба облучения органа или ткани к ущербу облучения всего тела при одинаковых эквивалентных дозах.
Значения коэффициентов WT для различных органов и тканей приведены ниже :
Орган или ткань
WT
Половые железы 0,25
Молочные железы 0,15
Красный костный мозг 0,12
Лёгкие 0,12
Щитовидная железа 0,03
Кость (поверхность) 0,03
Остальные органы (ткани) 0,3
Всё тело 1,0 Для оценки ущерба от стохастических эффектов воздействий ионизирующих излучений на персонал или население используют коллективную эквивалентную дозу S , равную произведению индивидуальных эквивалентных доз на число лиц, подвергшихся облучению. Единица коллективной эквивалентной дозы – человеко-зиверт (чел.-Зв).
Непосредственно после облучения человека клиническая картина оказывается скудной, иногда симптоматика вообще отсутствует. Именно поэтому знание дозы облучения человека играет решающую роль в диагностике и раннем прогнозировании течения острой лучевой болезни, в определении терапевтической тактики до развития основных симптомов заболевания.
В соответствии с дозой лучевого воздействия острую лучевую болезнь принято разделять на четыре степени тяжести.
Само по себе разделение больных по степеням тяжести весьма условно и преследует конкретные цели сортировки больных и проведение в отношении их конкретных организационно-терапевтических мероприятий. Абсолютно необходимо определять степень тяжести пострадавших при массовых поражениях, когда число пострадавших определяется десятками, сотнями и более. 2). Лучевая болезнь. 1. Острая лучевая болезнь (ОЛБ) представляет собой одномоментную травму всех органов и систем организма, но прежде всего – острое повреждение наследственных структур делящихся клеток, преимущественно кроветворных клеток костного мозга, лимфатической системы, эпителия желудочно-кишечного тракта и кожи, клеток печени, легких и других органов в результате воздействия ионизирующей радиации.
Будучи травмой, лучевое повреждение биологических структур имеет строго количественный характер, то есть малые воздействия могут оказаться незаметными, большие могут вызвать гибельные поражения. Существенную роль играет и мощность дозы радиационного воздействия: одно и то же количество энергии излучения, поглощенное клеткой, вызывает тем большее повреждение биологических структур, чем короче срок облучения. Большие дозы воздействия, растянутые во времени, вызывают существенно меньшие повреждения, чем те же дозы, поглощенные за короткий срок.
Основными характеристиками лучевого повреждения являются таким образом две следующие: биологический и клинический эффект определяется дозой облучения («доза - эффект»), с одной стороны, а с другой, этот эффект обуславливается и мощностью дозы («мощность дозы - эффект»)…
Сообщение отредактировал Zmeeныш - Сб, 08.01.11, 13:34:38
Великая ошибка наша - это то, что мы не знаем, где остановиться, что мы не примеряемся к своему положению и, благодаря ненасытной жадности, теряем все, что имеем."
Реферат на тему: "Средства индивидуальной защиты и медицинские средства защиты"
В результате своей деятельности человек использует химические вещества, которые по своим свойствам оказывают вредное влияние на организм. Не смотря на постоянное совершенствование технологии, увеличивается потенциальная опасность ситуаций, связанных с выбросами СДЯВ, утечками и др. Чтобы защитить население от воздействия СДЯВ, а также для локализации последствий, требуется своевременное и правильное использование средств индивидуальной защиты. А для обнаружения опасности необходимо использовать средства радиационной и химической разведки. В данном реферате описываются устройства, технические характеристики, порядок использования некоторых средств индивидуальной защиты и приборов радиационной и химической разведки. 1. Классификация средств индивидуальной защиты. Средства индивидуальной защиты подразделяются по защищаемым участкам: Средства Индивидуальной Защиты Органов Дыхания (СИЗОД); Средства Индивидуальной Защиты Глаз (СИЗГ); Средства Индивидуальной Защиты Кожи (СИЗК).
К СИЗД относят противогазы, респираторы, изолирующие дыхательные аппараты, комплект дополнительного патрона, гопкалитовый патрон.
К СИЗГ относят защитные очки от светового импульса ядерного взрыва.
К СИЗК относят защитную одежду.
По назначению СИЗ подразделяют на общевойсковые и специальные. Общевойсковые СИЗ предназначены для использования личным составом всех или нескольких видов вооруженных сил и родов войск. Специальные СИЗ предназначены для использования военнослужащими определенных специальностей или для выполнения специальных работ.
По принципу защитного действия СИЗОД и СИЗК подразделяются на фильтрующие и изолирующие.
Фильтрующие СИЗК представляют собой одежду из материала, который пропитывается специальным техническим составом для нейтрализации или адсорбции паров СДЯВ.); 2.Средства Индивидуальной Защиты Органов Дыхания 2.1 Фильтрующие средства защиты органов дыхания. Гражданские противогазы Фильтрующие противогазы предназначен для защиты человека от попадания в органы дыхания, на глаза и лицо РП, ОВ и БА (радиоактивной пыли, отравляющих веществ и биологических агентов). Принцип защитного действия основан на предварительной фильтрации вдыхаемого воздуха от вредных примесей. Перед применением противогаз необходимо проверить на исправность и герметичность. Гражданский противогаз ГП-7 одна из последних и самых совершенных моделей. Он надежно защищает от ОВ и многих СДЯВ, радиоактивной пыли и бактериальных средств. Подбор лицевой части необходимого типоразмера ГП-7 осуществляется на основании измерения мягкой сантиметровой лентой горизонтального и вертикального обхвата головы. Затем по специальным таблицам подбирается лицевая маска противогаза ГП-7 состоит из фильтрующе-поглощающей коробки ГП-7к, лицевой части МГП, незапотевающих пленок (6 шт.), утеплительных манжет (2 шт.), защитного трикотажного чехла и сумки.
Сопротивление току воздуха при спокойном дыхании не более 15 мм. вод. ст. Сопротивление току воздуха при интенсивном дыхании не более 200 мм. вод. ст Масса 900 г Ёмкость по хлору 6000 мл
Он надежно защищают от ОВ и многих СДЯВ, радиоактивной пыли и бактериальных средств. Достаточно легкие, мало стесняют движение. При долгой работе затрудняет дыхание, забивается фильтрующая коробка, возможен проскок. Ограничивает поле зрения. 2.2 Промышленные противогазы. Промышленные противогазы надёжно предохраняют органы дыхания, глаза, лицо от повреждения. Надо помнить, что они предназначены для защиты от конкретных ядовитых веществ. Поэтому имеют строгую направленность (избирательность), что позволяет повысить их защитную мощность. Запрещается применять такие противогазы при недостатке кислорода в воздухе. Например, при работах в емкостях, цистернах, колодцах и других изолированных помещениях. Их используют только там, где в воздухе содержится не менее 18% кислорода, суммарная объёмная доля паро- и газообразных вредных примесей не превышает 0,5% (фосфористого водорода - не более 0,2%, мышьяковистого водорода - 0,3%). Не допускается применение промышленных противогазов для защиты от низкокипящих, плохо сорбирующихся органических веществ, например, таких как метан, этилен, ацетилен. Не рекомендуется работать в таких противогазах, если состав газов и паров вредных веществ неизвестен. Коробки марок А,В,Г,Е,КД изготавливаются как с аэрозольными фильтрами, так и без них. Коробка БКФ - только с такими фильтрами. Коробки СО и М - без них. Белая вертикальная полоса на коробке означает, что она оснащена аэрозольным фильтром. Все коробки имеют сопротивление дыханию 18 мм вод.ст., СО и М -около 20. Если на коробке стоит индекс «8», то сопротивление дыханию не превышает 8 мм вод.ст. Время защитного действия промышленных противогазов от сильнодействующих ядовитых веществ зависит от марки фильтрующей коробки, типа СДЯВ и его концентрации. Например, коробка с фильтром противогаза марки КД при концентрации аммиака в воздухе 2,3 г/м защищает в течение 4 ч, без фильтра - 2 ч. Коробка СО при концентрации окиси углерода 6,2г/м - 1,5 ч. Противогаз марки Г при концентрации насыщенных паров ртути 0,01 г/м - 1 ч 20 мин. Коробка с фильтром и без фильтра с индексом «8» - 1 ч 40 мин. В процессе использования защитная мощность противогазов уменьшается. Например, при появлении даже незначительного запаха вредных веществ коробками марок А, В, Е, КД, БКФ пользоваться нельзя. Надо немедленно выйти из стравленной зоны и заменить коробку на новую. Годность коробок марки Г определяют по отработанному времени. Поэтому при обращении с ртутью необходимо вести строгий учет времени работы каждой коробки. Для коробок марок СО и М потерю защитной мощности определяют по их привесу. Для этого при снаряжении на этих коробках указывается вес в граммах. Перед выдачей таких противогазов коробки взвешиваются (с колпачками и прокладками) с точностью до 5 г и данные записываются в журнал. На коробку наклеивается этикетка с указанием даты выдачи и веса. При его увеличении по сравнению с начальным (указанным изготовителем) для марки СО на 50 г, для марки М на 35г коробки заменяют новыми. Следует помнить, что защитная мощность противогазов марок СО и М по окиси углерода снижается, если шихта увлажняется парами воды. Поэтому служба техники безопасности после каждого пользования должна отсоединять коробки, а горловины на дне и крышке закрывать колпачками с резиновыми прокладками. 2.3 Противогазы шланговые. Противогазы шланговые Используются при очистке резервуаров и других емкостей от нефте- продуктов, при сварочных работах закрытых и полузакрытых объёмах (ямах, колодцах). ПШ-1 предназначен для защиты органов дыхания от любого вредного газа, пара, дыма и пыли в любых концентрациях в атмосфере с недостатком кислорода. ПШ-2 предназначен для тех же условий, что и ПШ-1. Однако в нем воздух под шлем-маску нагнетается вентилятором, в связи с чем отсутствует сопротивление дыханию. Установка для подачи свежего воздуха имеет электрический и ручной приводы. Электропривод позволяет подавать под шлем-маску до 50 л/мин свежего воздуха. Дополнительные патроны С целью расширения возможностей противогазов по защите от СДЯВ для них введены дополнительные патроны (ДПГ-1 и ДПГ- 3). Противогазы с фильтрующе-поглощающей коробкой ГП-7к и укомплектованные ДПГ-З защищают от аммиака, хлора, диметиламина, нитробензола, сероводорода, сероуглерода, синильной кислоты, тетраэтилсвинца, фенола, фосгена, фурфурола, хлористого водорода, хлористого циана и этилмеркаптана. ДПГ-1 кроме того защищает еще от двуокиси азота, метила хлористого, окиси углерода и окиси этилена. Для использования по назначению дополнительные патроны необходимо привинтить к обычной фильтрующей коробке противогаза. В комплект дополнительных патронов ДПГ-1 и ДПГ-З входят соединительная трубка и вставка. Патрон имеет цилиндрическую форму и внешне похож на фильтрующе-поглощающую коробку ГП-5, ГП-7. С лицевой частью противогаза патрон связан с помощью соединительной трубки, для чего на один из концов навинчивается горловина. В дне патрона нарезана внутренняя резьба для присоединения к фильтрующе-поглощающей коровке ГП-5 или ГП-7. Внутри патрона ДПГ-1 два слоя шихты специальный поглотитель и гопкалит. В ДПГ-З только слой поглотителя. Чтобы защитить шихту от увлажнения при хранении, горловины должны быть постоянно закрытыми: наружная с навинченным колпачком с прокладкой, внутренняя с ввернутой заглушкой. На поверхность каждого патрона наносится маркировка: над зигом наименование, между зигом и закатным швом условное обозначение предприятия-изготовителя, дата выпуска и номер партии.
Время защитного действия зависит от: воздушного потока 30 л/мин; относительной влажности воздуха 75% и температуры окружающей среды от -30 до +40 °С; Для окиси этилена и метила хлористого от -10 до +40 °С. Для детских противогазов время защитного действия по СДЯВ не менее, чем в два раза больше. Расширение возможностей фильтрующих противогазов защита от многих промышленных СДЯВ. Ограниченное время работы, некоторая громоздкость, не применяются при низком содержании кислорода в воздухе, затрудняют дыхание, что особенно заметно при тяжелой физической работе.
2.4 Гопкалитовый патрон. Гопкалитовые патроны предназначены для защиты органов дыхания от оксида углерода. Принцип действия одноразового патрона основан на каталитическом окислении оксида углерода до диоксида углерода. Так как гопкалитовые патроны не обогащают воздух кислородом, то их можно использовать лишь при содержании кислорода не менее 17% по объему. Используется совместно с фильтрующей коробкой от противогаза (навинчивается снизу). Время работы до 6 часов.
Сопротивление току воздуха при спокойном дыхании не более 15 мм. вод. Ст. Обеспечение защиты от СО при объемной концентрации не более 0,25 %
Возможность работать в фильтрующем противогазе в условиях среднего задымления. Относительно малое время работы. Небольшое затруднение дыхания. Не применяются при низком содержании кислорода или высоком содержании угарного газа. Плохо работают при низкой температуре. Одноразовые. 2.5 Респираторы и химические респираторы.[/size] Респираторы представляют собой облегченное средство защиты органов дыхания от вредных газов, паров, аэрозолей и пыли. Респираторы получили широкое распространение. В шахтах, на рудниках, на химически вредных и запыленных предприятиях при работе с удобрениями и ядохимикатами в сельском хозяйстве. Очистка вдыхаемого воздуха от парогазообразных примесей осуществляется за счет физико-химических процессов (адсорбции, хемосорбции, катализа), а от аэрозольных примесей - путем фильтрации через волокнистые материалы. Респираторы делятся на два типа. 1. Первый - это респираторы, у которых полумаска и фильтрующий элемент одновременно служат и лицевой частью. 2. Второй очищает вдыхаемый воздух в фильтрующих патронах, присоединенных к полумаске. По назначению респираторы подразделяются на: 1. Противопылевые защищают органы дыхания от аэрозолей различных видов. В качестве фильтров в противопылевых респираторах используют тонковолокнистые фильтровальные материалы. Наибольшее распространение получили полимерные фильтровальные материалы типа ФП (фильтр Петрянова), благодаря их высокой эластичности, механической прочности, большой пылеемкости, а, главное, из-за высоких фильтрующих свойств. 2. Противогазовые - от вредных паров и газов. 3. Газо-пылезащитные - от газов, паров и аэрозолей при одновременном их присутствии в воздухе. Важной отличительной способностью материалов ФП, изготовленных из перхлорвинила и других полимеров, обладающих изоляционными свойствами, является то, что они несут электростатические заряды, которые резко повышают эффективность улавливания аэрозолей и пыли. В зависимости от срока службы респираторы могут быть: 1. Одноразового применения (ШБ-1«Лепесток», «Кама», У-2К Р-2), которые после отработки непригодны для дальнейшего использования. Одноразовые респираторы обычно противопылевые 2. Многоразового использования (РПГ-67) предусмотрена смена фильтров., обычно газо-пылезащитные. РПГ-67 имеет несколько марок, которые соответствуют марке фильтрующего патрона. В свою очередь патроны различаются по составу поглотителей. В центре крышки патрона нанесена маркировка. Газо-пылезащитные респираторы надежно защищают органы дыхания, если они правильно подобраны, удобно надеты и оголовье подогнано по голове. В системе гражданской обороны наибольшее применение имеет респиратор Р-2. Р-2 предназначен для защиты органов дыхания от радиоактивной и грунтовой пыли. Так как Р-2 не обогащает воздух, то он может применятся лишь при концентрации кислорода в воздухе не менее 17 %. Также он не защищает от токсичных газов и паров. При накоплении влаги внутри респиратора рекомендуется (по возможности) на 1-2 минуты снять его и протереть внутреннюю поверхность, а затем снова надеть. Респиратор Р-2 представляет собой фильтрующую подмаску, снабженную двумя клапанами вдоха, одним клапаном выдоха с предохранительным экраном, оголовьем и носовым зажимом. Вес 60 г. Фильтрующая поверхность 200 см2 Число размеров 3 Сопротивление току воздуха при среднем дыхании менее 9 мм. вод. ст.
Легкий, компактный, почти не затрудняет дыхание, хорошо защищает от пыли. Не защищает от паров и газов ядовитых веществ. Забивается пылью. Изолирующие средства защиты органов дыхания 2.6 Изолирующие противогазы. Изолирующие противогазы (ИП) являются специальным средством защиты органов дыхания, глаз, кожи лица от любых вредных примесей в воздухе независимо от их свойств и концентрации, используются в чрезвычайных ситуациях, при невозможности применения фильтрующих противогазов. Например: 1. при наличии в воздухе таких отравляющих веществ или вредных примесей, которые плохо или совсем не задерживаются фильтрующими противогазами 2. при очень высоких концентрациях отравляющих веществ в воздухе, когда фильтрующие противогазы могут дать очень быстрый проскок 3. при кислородном голодании, концентрации кислорода в воздухе менее 16 % 4. при работе под водой при глубине менее 7 метров
Полная изоляция органов дыхания от окружающей среды. Показатели зависят от запаса кислорода и характера выполняемых работ. ИП подразделяются на:
противогазы на основе химически связанного кислорода
противогазы на основе сжатого воздуха или кислорода
ИП имеют объем воздуха, который должен постоянно регенерироваться в процессе работы. Регенерация заключается в пополнении запасов кислорода, израсходованного на дыхание и очистке от СО2 и влаги, в процессе дыхания выделившихся. Основные характеристики: № ИП-5 Время работы в противогазе. На суше при средней нагрузке: 75 мин При легкой физической нагрузке: 90 мин В состоянии относительного покоя: 120 мин Допустимая глубина погружения: 7 м Температурные интервалы для нормальной работы: В воде: 1 30 На суше: -40 +50 Вес снаряженного противогаза в комплекте: 5,2 кг
№ИП-4 Время работы в противогазе. При тяжелой физической нагрузке: 30-40 мин При средней физической нагрузке: 60-75 мин При легкой физической нагрузке: 180 мин Число размеров лицевой части: 3 Температурные интервалы для нормальной работы: от -40 до 40 С Вес снаряженного противогаза в комплекте: 3,4 кг
Защита от всех типов вредных примесей в воздухе, действующих на дыхание. Регулирование состава кислорода в случае кислородного голодания. Некоторая громоздкость, стесненность движений. Ограниченный запас кислорода. Сложно зафиксировать окончание кислорода в баллоне. Средства индивидуальной защиты органов дыхания для детей Фильтрующие противогазы предназначен для защиты человека от попадания в органы дыхания, на глаза и лицо РП, ОВ и БА (радиоактивной пыли, отравляющих веществ и биологических агентов). По устройству фильтрующего патрона детские СИЗОД не отличаются от взрослых. Отличие заключается в устройстве лицевой маски. Для защиты органов дыхания детей существуют следующие противогазы: ДП-бм, ДП-6, ПДФ-7, ПДФ-Д, ПДФ-Ш. Кроме того, для защиты детей до полутора лет имеется КЗД-4. 2.7 Ватно-марлевая повязка. Защищает основную часть лица от подбородка до глаз, изготавливается из ваты и марли (или только из ваты). Ватно-марлевая повязка может защищать от хлора, для этого она пропитывается 2% раствором питьевой соды, а пропитанная 5% раствором лимонной или уксусной кислоты защищает от аммиака. Она одноразового употребления, после применения ее сжигают. Обычно ватно-марлевую повязку используют вместе с очками. 2.8 Противопыльная тканевая маска ПТМ-1 Защищает практически все лицо (вместе с глазами), поверхность маски играет роль фильтра, корпус маски изготовлен из 4-х - 5-ти слоев ткани: верхний из неплотной ткани, нижний из плотной ткани (сатин, бязь). Крепление маски обеспечивает плотное прилегание ее к лицу. ПТМ-1 хранится в специальном мешочке и может повторно использоваться после дезактивации. Временно, но достаточно надежно может обеспечить защиту органов дыхания, от РП, вредных аэрозолей, особенно при отсутствии специальных средств защиты. Может временно защитить от хлора и аммиака. Недостатки. Носят вспомогательный характер, могут использоваться лишь кратковременно, не защищают от высоких концентраций СДЯВ.
Сообщение отредактировал Zubron - Чт, 27.01.11, 14:49:53
3. Средства защиты кожи. По принципу защитного действия, как и средства защиты дыхания, средства защиты кожи бывают изолирующими или фильтрующими. 3.1 Изолирующие средства защиты кожи. Изолирующие средства защиты кожи изготавливают из прорезиненной ткани и применяют при длительном нахождении людей на зараженной территории, при выполнении дегазационных и дезинфекционных работ в очагах поражения и зонах заражения. К изолирующим средствам защиты относятся: легкий защитный костюм Л-1; защитный комбинезон и общевойсковой защитный комплект (ОЗК). Предназначены для защиты бойцов газоспасательных отрядов, аварийно-спасательных формирований и войск ГО при выполнении работ в условиях воздействия высоких концентраций газообразных СДЯВ, азотной и серной кислот, а также жидкого аммиака. 3.1.1 Комплект изолирующий химический КИХ-4,5 В состав комплекта входит защитный костюм, резиновые и хлопчатобумажные перчатки. Для надевания и снимания костюма на спинке комбинезона имеется лаз, герметизирующийся закручиванием костюмной ткани. Герметизация швов костюма осуществляется с лицевой стороны путем использования проклеечной ленты. КИХ-4,5 используется в сочетании с одной из дыхательных систем типа АСВ-2, КИП-8, которая размещается в подкостюмном пространстве. Выдыхаемый воздух попадает под костюм и через клапан сброса избыточного давления сбрасывается в атмосферу. Ких-4,5 надевается поверх обычной одежды. После использования комплект подвергается дегазации. Изготавливается трех размеров 49,53,57. 3.1.2 Легкий защитный костюм Л-1. Состоит из рубахи с капюшоном, брюк с чулками, двупалых перчаток, и подшлемника. Размеры Л-1 аналогичны размерам КИХ. Масса Л-1 3 килограмма. Л-1 обычно используется при ведении радиационной химической и бактериологической разведки. 3.1.3 Общевойсковой защитный комплект. Состоит из рубахи с капюшоном, брюк, чулок, перчаток. Размеры ОЗК аналогичны размерам КИХ. Масса 5 килограмма. Обычно используется при ведении радиационной химической и бактериологической разведки, а также для защиты личного состава в условиях химической и бактериологической атаки. 3.2 Фильтрующие средства защиты кожи. 3.2.1 Комплект защитной фильтрующей одежды ЗФО-58 Защита кожных покровов человека от воздействия отравляющих веществ, находящихся в парообразном состоянии. Комплект обеспечивает, кроме того, защиту от радиоактивной пыли и бактериальных средств, находящихся в аэрозольном состоянии. ЗФО-58 состоит из хлопчатобумажного комбинезона, нательного белья, подшлемника и двух пар портянок. Используется в комплекте с фильтрующим противогазом. 3.2.2 Комплект защитной фильтрующей одежды ЗФО-МП Защита кожных покровов человека от воздействия различных СДЯВ, находящихся в паро-капельном состоянии Он состоит из куртки с капюшоном и брюк, двухслойный; верхний слой изготавливается из хлопколавсановой ткани с кислотозащитной пропиткой, внутренний слой из хлопчатобумажной ткани с химзащитной пропиткой, связывающей пары действующего вещества. В состав комплекта входит: бельевой слой из бязи, перчатки комбинированные, ботинки резинотекстильные. Конструкция комплекта исключает попадание паров СДЯВ на кожные покровы. 3.3 Простейшие средства защиты кожи. К простейшим средствам защиты кожи относят одежду и обувь из грубой ткани. Они защищают от радиоактивной пыли и бактериальных средств, а также могут защитить, в течение небольшого времени от СДЯВ и ОВ. При отсутствии промышленных образцов средств защиты, а также в экстренных ситуациях могут оказаться очень полезными. Не голышом же по зараженной местности ходить. Носят вспомогательный характер, могут использоваться лишь кратковременно, не защищают от высоких концентраций СДЯВ. Обеспечение личного состава и населения СИЗ и практическое обучение правильному применению и пользованию этими средствами является важным этапом в комплексе защитных мероприятий .Весь комплекс этих мероприятий направлен на то, чтобы максимально снизить вероятность потерь и поражения при возможных авариях и ЧС мирного и военного времени .Изучение использования и правильного применения приборов ДК, РХР, а также проведение с их помощью дозиметрического контроля и разведки необходимы для своевременного предотвращения аварий и ЧС на химически- и радиационно-опасных объектах 4. Медицинские средства защиты. В комплексе защитных мероприятий, проводимых ГО, большое значение имеет обеспечение населения средствами специальной профилактики и первой медпомощи, а также обучение правилам пользования ими. Применение медицинских средств индивидуальной защиты в сочетании с СИЗ органов дыхания и кожи - один из основных способов защиты людей в условиях применения противником оружия массового поражения, а также в условиях ЧС мирного времени. Учитывая, что в сложной обстановке необходимо обеспечить профилактику и первую мед. помощь в самые короткие сроки, особое значение приобретает использование медицинских средств в порядке само- и взаимопомощи. Медицинские средства индивидуальной защиты - это медицинские препараты, материалы и специальные средства, предназначенные для использования в ЧС с целью предупреждения поражения или снижения эффекта воздействия поражающих факторов и профилактики осложнений. К табельным медицинским средствам индивидуальной защиты относятся: 1. аптечка индивидуальная АИ-2; 2. универсальная аптечка бытовая для населения, проживающего на радиационно-опасных территориях; 3. индивидуальные противохимические пакеты - ИПП-8,ИПП-10; 4. пакет перевязочный медицинский - ППМ. 4.1 Аптечка индивидуальная. Предназначена для профилактики и первой мед. помощи при радиационном, химическом и бактериальном поражениях, а также при их комбинациях с травмами. Носят аптечку в кармане. В ней имеются: Гнездо N 1: шприц-тюбик с противоболевым средством (с бесцветным колпачком). В аптечку не вложен, выдается по решению МСГО района. Применяется при резких болях, вызванных переломами костей, обширными ожогами и ранами, в целях предупреждения шока путем введения в бедро или ягодицу (можно через одежду). Гнездо N 2: в АИ-2 находится профилактическое средство при отравлении ФОВ - тарен. Начало действия тарена через 20 минут после приема. Принимать по одной таблетке по сигналу "Химическая тревога". Детям до 8 лет на один прием четверть таблетки, 8-15 лет - половину таблетки. Разовая доза тарена в 10 раз уменьшает поражающую дозу ФОВ. При нарастании признаков отравления принять еще одну разовую дозу, в последующем принимать препарат через 4-6 часов. Вместо тарена или в дополнение к нему может быть использован препарат П-6. Разовая доза -2 таблетки, обеспечивает защиту от 3-4 смертельных доз в течение 12 часов. Личный состав Вооруженных Сил и невоенизированных формирований ГО обеспечивается аптечками АИ-1, в которых находится лечебный препарат афин в шприц-тюбике с красным колпачком, используемый при отравлениях ФОВ. Гнездо N 3: противобактериальное средство N 2 (сульфадиметоксин) предназначается для профилактики инфекционных заболеваний после радиоактивного облучения. Принимают после облучения при возникновении желудочно-кишечных расстройств по 7 таблеток в один прием, по 4 таблетки в последующие 2 суток. Детям до 8 лет в первые сутки 2 таблетки, в последующие 2 суток по 1 таблетке; 8-15 лет в первые сутки по 3,5 таблетки, в последующие двое - 2 таблетки. Гнездо N 4: радиозащитное средство N 1 (РС-1, таблетки цистамина) - обладает профилактическим эффектом при поражениях ионизирующим излучением. Фактор уменьшения дозы (ФУД) - показатель, характеризующий степень снижения биологического действия радиации - при приеме РС-1 составляет 1, 6. При угрозе облучения, по сигналу "Радиационная опасность" или перед входом на территорию с повышенным уровнем радиации за 35-40 минут выпить 6 таблеток, запив водой. Защитный эффект сохраняется 5-6 часов. При необходимости (продолжающееся облучение или новая угроза) через 4-5 часов после первого приема выпить еще 6 таблеток. Детям до 8 лет на один прием дают 1, 5 таблетки, 8-15 лет - 3 таблетки. Гнездо N 5: противобактериальное средство N 1 (таблетки хлортетрациклина с нистатином) предназначено для общей экстренной профилактики инфекционных заболеваний (чума, холера, туляремия, сибирская язва, бруцеллез и др.), возбудители которых могут быть применены в качестве биологического оружия. Принимать при угрозе бактериологического заражения или самом заражении (еще до установления вида возбудителя). Разовая доза - 5 таблеток одномоментно, запивая водой. Повторный прием такой же дозы через 6 часов. Детям до 8 лет на один прием 1 таблетка, 8-15 лет - 2, 5 таблетки. ПБС-1 может быть также применено для профилактики инфекционных осложнений лучевой болезни, обширных ран и ожогов. Гнездо N 6: радиозащитное средство N 2 (РС-2, таблетки йодистого калия по 0, 25) предназначено для лиц, находящихся в зоне выпадения радиоактивных осадков: блокирует щитовидную железу для радиоактивного йода, поступающего с дыханием, продуктами питания и водой. Принимать по 1 таблетке натощак в течение 10 суток (в мирное время в случае аварии на АЭС принимать все время и еще 8 дней после последнего выброса). Детям 2-5 лет дают по полтаблетки, менее 2-х лет - четверть таблетки, грудным - четверть таблетки только в первый день. Если начать прием в первые 2-3 часа после выпадения радиоактивного йода - защита на 90-95 %, через 6 часов - на 50 %, через 12 часов - на 30 %, через 24 часа - эффекта нет. Гнездо N 7: противорвотное средство (этаперазин) применяется после облучения, а также при явлениях тошноты в результате ушиба головы. Можно принимать не более 6 таблеток в сутки. 4.2 Индивидуальный противохимический пакет (ИПП-8) ИПП-8 содержит полидегазирующую рецептуру, находящуюся во флаконе, и набор салфеток. Предназначен для обеззараживания участков кожи, прилегающей к ним одежды и СИЗ, населения старше 7-летнего возраста от боевых ОВ и БС. Необходимо избегать попадания жидкости в глаза. Последовательность обработки: смоченным тампоном протереть открытые участки кожи (шея, кисти рук) , а также наружную поверхность маски противогаза, который был надет. Другим тампоном протереть воротничок и края манжет одежды, прилегающие к открытым участкам кожи. Дегазирующую жидкость можно использовать при дезактивации кожных покровов, загрязненных РВ, когда не удается водой и мылом снизить наличие РВ до допустимых пределов. 4.3 Пакет перевязочный медицинский (ППМ) Применяется ППМ для перевязки ран, ожогов и остановки некоторых видов кровотечения. Представляет собой стерильный бинт с двумя ватно-марлевыми подушечками, заключенными в непроницаемую герметическую упаковку. Порядок пользования ППМ: разорвать по надрезу наружную оболочку и снять ее; развернуть внутреннюю оболочку; одной рукой взять конец, а другой - скатку бинта и развернуть повязку; на раневую поверхность накладывать так, чтобы их поверхности, прошитые цветной ниткой, оказались наверху. 4.4 Универсальная аптечка бытовая (УАБ) Укомплектована следующими средствами: радиозащитные средства; общетерапевтические препараты (аспирин, седалгин, аммиак, бесалол, валидол, нитроглицерин, папазол, диазолин, феназепам); антисептические и перевязочные средства (бриллиантовый зеленый, калия перманганат, деринат, левоминоль или мафенидин ацетат, вата, лейкопластырь бактерицидный, бинт). Кроме индивидуальных, используются следующие медицинские средства защиты: радиозащитные, обезболивающие и противобактериальные препараты, медицинские рецептуры от ОВ (СДЯВ) и перевязочные средства. К радиозащитным препаратам относятся: 1. радиопротекторы (профилактические лекарственные средства, снижающие степень лучевого поражения (цистамин в АИ-2) 2. комплексоны - препараты, ускоряющие выведение радиоактивных веществ из организма (ЭДТА, гетацин-кальций, унитиол) 3. адаптогены - препараты, повышающие общую сопротивляемость организма (элеутерококк, женьшень, китайский лимонник, дибазол) 4. адсорбенты - вещества, способные захватывать на свою поверхность радиоактивные и другие вредные вещества и вместе с ними выводиться из организма (активированный уголь, адсобар, вакоцин) 5. антигеморрагические средства (желатина, серотонин) и стимуляторы 6. кровотворения (лейкоцетин, лейкоген, пентоксил). Препараты данной группы применяются только при оказании врачебной помощи и лечении в стационаре 7. стимуляторы ЦНС (индопан, бемегрид, сиднокарб) - применяются при оказании врачебной помощи и лечении в стационаре.
Защита от бактериальных (биологических) средств поражения складывается из двух направлений - общей экстренной (антибиотикопрофилактика) и специальной экстренной профилактики инфекционных заболеваний (иммунизация) бактерийными препаратами (вакцины, анатоксины). Медицинские средства защиты от СДЯВ, ОВ представлены антидотами (противоядиями) - препаратами, являющимися физиологическими антогонистами ядов. К ним относятся: афин, атропин, будаксим, тарен - против ФОВ и ФОС; амилнитрит (пропилнитрит), антициан, хромосмон, тиосульфат натрия антидоты синильной кислоты и других цианистых соединений; унитиол - антидот люизита и мышьяксодержащих СДЯВ.
5. Выводы. Из вышесказанного автор сделал следующие выводы: Обеспечение личного состава и населения СИЗ и практическое обучение правильному применению и пользованию этими средствами является важным этапом в комплексе защитных мероприятий .Весь комплекс этих мероприятий направлен на то, чтобы максимально снизить вероятность потерь и поражения при возможных авариях и ЧС мирного и военного времени. Не знание основ гражданской обороны не освобождает от последствий при аварии, а знание оных помогает ее предотвратить или же минимизировать неприятные последствия таковой.
Сообщение отредактировал Zubron - Чт, 27.01.11, 15:25:57
Оружие массового поражения (оружие массового уничтожения) — оружие, предназначенное для нанесения массовых потерь или разрушений на большой площади. Поражающие факторы оружия массового поражения, как правило, продолжают наносить урон в течение длительного времени. Также ОМП деморализует как войска, так и гражданское население. Сравнимые последствия могут наступить и в случае применения обычного оружия или совершения террористических актов на экологически опасных объектах, таких как АЭС, плотинах и гидроузлах, химических заводах и т.д.
На вооружении современных государств стоят такие виды ОМП: химическое оружие; биологическое оружие; ядерное оружие; обычные средства поражения;
Характеристики
Характеризуются большой поражающей способностью и большой территорией действия. Объектами воздействия могут являться как сами люди, конструкции, так и природная среда обитания: плодородные почвы, местность (в целях сковывания противника), растения, животные.
Поражающие факторы ОМП всегда имеют как мгновенное действие, так и более или менее протяжённое во времени Поражающие факторы ядерного взрыва — это воздушная ударная волна, сейсмическая волна, световое излучение ЯВ, проникающая радиация, электромагнитный импульс (мгновенные), радиоактивное заражение (протяжённый). Для химического оружия поражающим фактором является, собственно, отравляющее вещество в различных видах (газообразном, аэрозоль, на поверхности предметов). Продолжительность действия изменяется в зависимости от вида отравляющего вещества и метеорологических условий. Для биологического оружия поражающий фактор — возбудитель болезни (аэрозоль, на поверхности предметов). Продолжительность может меняться в зависимости от возбудителя и внешних условий от нескольких часов или дней до десятков лет (естественные очаги сибирской язвы существуют как минимум десятилетиями).
Гипотетические виды оружия массового поражения
Оружие массового поражения гипотетически может работать и на других принципах: Инфразвуковое оружие Радиологическое оружие Генетическое оружие Геофизическое оружие Тектоническое оружие Аннигиляционное оружие (Бомба из Антиматерии) Орбитальная пушка
Не известно ни одного принятого на вооружение образца подобного оружия.
Сверхрадиочастотное оружие
Опасность войны
Развитие исследований в области разработки оружия массового поражения привело к существенному повышению опасности войны как для стран-участниц, так и для всего мира.
Доклад на тему Авария на Чернобыльской АЭС(1986 год).
Авария на Чернобыльской АЭС, Чернобыльская авария — разрушение 26 апреля 1986 года четвёртого энергоблока Чернобыльской атомной электростанции, расположенной на территории Украинской ССР (ныне — Украина). Разрушение носило взрывной характер, реактор был полностью разрушен, и в окружающую среду было выброшено большое количество радиоактивных веществ. Авария расценивается как крупнейшая в своём роде за всю историю ядерной энергетики, как по предполагаемому количеству погибших и пострадавших от её последствий людей, так и по экономическому ущербу. На момент аварии Чернобыльская АЭС была самой мощной в СССР. 31 человек погиб в течение первых 3-х месяцев после аварии; отдалённые последствия облучения, выявленные за последующие 15 лет, стали причиной гибели от 60 до 80 человек. 134 человека перенесли лучевую болезнь той или иной степени тяжести, более 115 тыс. человек из 30-километровой зоны были эвакуированы. Для ликвидации последствий были мобилизованы значительные ресурсы, более 600 тыс. человек участвовали в ликвидации последствий аварии.
В отличие от бомбардировок Хиросимы и Нагасаки, взрыв напоминал очень мощную «грязную бомбу» — основным поражающим фактором стало радиоактивное заражение. Радиоактивное облако от аварии прошло над европейской частью СССР, Восточной Европой и Скандинавией.
Чернобыльская авария стала событием большого общественно-политического значения для СССР, и это наложило определённый отпечаток на ход расследования её причин. Подход к интерпретации фактов и обстоятельств аварии менялся с течением времени, и полностью единого мнения нет до сих пор.
Характеристики АЭС
Чернобыльская АЭС (51°23′22″ с. ш. 30°05′59″ в. д.) расположена на территории Украины вблизи города Припять, в 18 километрах от города Чернобыль, в 16 километрах от границы с Белоруссией и в 110 километрах от Киева.
Ко времени аварии на ЧАЭС использовались четыре реактора РБМК-1000 (реактор большой мощности канального типа) с электрической мощностью 1000 МВт (тепловая мощность 3200 МВт) каждый. Ещё два аналогичных реактора строились. ЧАЭС производила примерно десятую долю электроэнергии УССР.
Авария
Фотография территории вокруг Чернобыльской АЭС со станции «Мир», 27 апреля 1997
Примерно в 1:24 26 апреля 1986 года на 4-м энергоблоке Чернобыльской АЭС произошёл взрыв, который полностью разрушил реактор. Здание энергоблока частично обрушилось, при этом погибло 2 человека — оператор насосов ГЦН (Главный Циркуляционный Насос) Валерий Ходемчук (тело не найдено, завалено под обломками двух 130-тонных барабан-сепараторов) и сотрудник пуско-наладочного предприятия Владимир Шашенок (умер от перелома позвоночника и многочисленных ожогов в 6:00 в Припятской МСЧ, утром 26-го апреля). В различных помещениях и на крыше начался пожар. Впоследствии остатки активной зоны расплавились. Смесь из расплавленного металла, песка, бетона и частичек топлива растеклась по подреакторным помещениям. В результате аварии произошёл выброс в окружающую среду радиоактивных веществ, в том числе изотопов урана, плутония, иода-131 (период полураспада 8 дней), цезия-134 (период полураспада 2 года), цезия-137 (период полураспада 33 года), стронция-90 (период полураспада 28 лет).
Хронология событий
На 25 апреля 1986 года была запланирована остановка 4-го энергоблока Чернобыльской АЭС для очередного планово-предупредительного ремонта. Во время таких остановок обычно проводятся различные испытания оборудования, как регламентные, так и нестандартные, проводящиеся по отдельным программам. В этот раз целью одного из них было испытание так называемого режима «выбега ротора турбогенератора», предложенного проектирующими организациями в качестве дополнительной системы аварийного электроснабжения. Режим «выбега» позволял бы использовать кинетическую энергию ротора турбогенератора для обеспечения электропитанием питательных (ПЭН) и главных циркуляционных насосов (ГЦН) в случае обесточивания собственных нужд станции. Однако данный режим не был отработан или внедрён на АЭС с РБМК. Это были уже четвёртые испытания режима, проводившиеся на ЧАЭС. Первая попытка в 1982 году показала, что напряжение при выбеге падает быстрее, чем планировалось. Последующие испытания, проводившиеся после доработки оборудования турбогенератора в 1983, 1984 и 1985 годах также, по разным причинам, заканчивались неудачно.
Испытания должны были проводиться на мощности 700—1000 МВт (тепловых) 25 апреля 1986 года. Примерно за сутки до аварии (к 3ч 47 мин. 25 апреля) мощность реактора была снижена примерно до 50 % (1600 МВт)[9]. В соответствии с программой, отключена система аварийного охлаждения реактора. Однако дальнейшее снижение мощности было запрещено диспетчером Киевэнерго. Запрет был отменён диспетчером в 23 часа. Во время длительной работы реактора на мощности 1600 МВт происходило нестационарное ксеноновое отравление. В течение 25 апреля пик отравления был пройден, началось разотравление реактора. К моменту получения разрешения на дальнейшее снижение мощности оперативный запас реактивности (ОЗР) возрос практически до исходного значения и продолжал возрастать. При дальнейшем снижении мощности разотравление прекратилось, и начался снова процесс отравления.
В течение примерно двух часов мощность реактора была снижена до уровня, предусмотренного программой (около 700 МВт тепловых), а затем, по неустановленной причине, до 500 МВт. В 0 ч 28 мин при переходе с системы локального автоматического регулирования (ЛАР) на автоматический регулятор общей мощности (АР) оператор (СИУР) не смог удержать мощность реактора на заданном уровне, и мощность провалилась (тепловая до 30 МВт и нейтронной до нуля). Персонал, находившийся на БЩУ-4, принял решение о восстановлении мощности реактора и (извлекая поглощающие стержни реактора) через несколько минут добился начала её роста и в дальнейшем — стабилизации на уровне 160—200 МВт (тепловых). При этом ОЗР непрерывно снижался из-за продолжающегося отравления. Соответственно стержни ручного регулирования (РР) продолжали извлекаться.
После достижения 200 МВт тепловой мощности были включены дополнительные главные циркуляционные насосы, и количество работающих насосов было доведено до восьми. Согласно программе испытаний, четыре из них, совместно с двумя дополнительно работающими насосами ПЭН, должны были служить нагрузкой для генератора «выбегающей» турбины во время эксперимента. Дополнительное увеличение расхода теплоносителя через реактор привело к уменьшению парообразования. Кроме этого, расход относительно холодной питательной воды оставался небольшим, соответствующим мощности 200 МВт, что вызвало повышение температуры теплоносителя на входе в активную зону, и она приблизилась к температуре кипения.
В 1:23:04 начался эксперимент. Из-за снижения оборотов насосов, подключённых к «выбегающему» генератору, и положительного парового коэффициента реактивности (см. ниже) реактор испытывал тенденцию к увеличению мощности (вводилась положительная реактивность), однако в течение почти всего времени эксперимента поведение мощности не внушало опасений.
В 1:23:39 зарегистрирован сигнал аварийной защиты АЗ-5 от нажатия кнопки на пульте оператора. Поглощающие стержни начали движение в активную зону, однако вследствие их неудачной конструкции (см. Концевой эффект) и заниженного (не регламентного) оперативного запаса реактивности реактор не был заглушён. Через одну-две секунды был записан фрагмент сообщения, похожий на повторный сигнал АЗ-5. В следующие несколько секунд зарегистрированы различные сигналы, свидетельствующие о быстром росте мощности, затем регистрирующие системы вышли из строя.
По различным свидетельствам, произошло от одного до нескольких мощных ударов (большинство свидетелей указали на два мощных взрыва), и к 1:23:47—1:23:50 реактор был полностью разрушен.
Последствия аварии
Непосредственно во время взрыва на четвёртом энергоблоке погиб только один человек (Валерий Ходемчук), ещё один скончался утром от полученных травм (Владимир Шашенок). Впоследствии, у 134 сотрудников ЧАЭС и членов спасательных команд, находившихся на станции во время взрыва, развилась лучевая болезнь, 28 из них умерли в течение следующих нескольких месяцев .
В 1:24 ночи на пульт дежурного СПЧ-2 по охране ЧАЭС поступил сигнал о возгорании. К станции выехал дежурный караул пожарной части (на ЗИЛ-131) во главе с лейтенантом внутренней службы Правиком. Из Припяти на помощь выехал караул 6-й городской пожарной части во главе с лейтенантом Кибенком. Руководство тушением пожара принял на себя лейтенант Правик. Его грамотными действиями было предотвращено распространение пожара. Были вызваны дополнительные подкрепления из Киева и близлежащих областей. Из средств защиты у пожарных были только брезентовая роба (боёвка), рукавицы, каска. Звенья ГЗДС были в противогазах КИП-5. К 2.30 РТП майор Леонид Телятников. К 4 часам утра пожар был локализован на крыше машинного зала, а к 6 часам утра был затушен. Всего принимало участие в тушении пожара 69 человек личного состава и 14 единиц техники. Наличие высокого уровня радиации было достоверно установлено только к 3:30, так как из двух имевшихся приборов на 1000 рентген в час один вышел из строя, а другой оказался недоступен из-за возникших завалов. Поэтому в первые часы аварии были неизвестны реальные уровни радиации в помещениях блока и вокруг него. Неясным было и состояние реактора.
Пожарные не дали огню перекинуться на третий блок (у 3-го и 4-го энергоблоков единые переходы). Вместо огнестойкого покрытия, как было положено по инструкции, крыша машинного зала была залита обычным горючим битумом. Примерно к 2 часам ночи появились первые поражённые из числа пожарных. У них стала проявляться слабость, рвота, «ядерный загар». Помощь им оказывали на месте, в медпункте станции, после чего переправляли в городскую больницу Припяти. 27 апреля первую группу пострадавших из 28 человек отправили самолетом в Москву, в 6-ю радиологическую больницу. Практически не пострадали водители пожарных автомобилей.
В первые часы после аварии, многие, по-видимому, не осознавали, насколько сильно повреждён реактор, поэтому было принято ошибочное решение обеспечить подачу воды в активную зону реактора для её охлаждения. Для этого требовалось вести работы в зонах с высокой радиацией. Эти усилия оказались бесполезны, так как и трубопроводы, и сама активная зона были разрушены. Другие действия персонала станции, такие как тушение очагов пожаров в помещениях станции, меры, направленные на предотвращение возможного взрыва, напротив, были необходимыми. Возможно, они предотвратили ещё более серьёзные последствия. При выполнении этих работ многие сотрудники станции получили большие дозы радиации, а некоторые даже смертельные.
Ликвидация последствий аварии
Значок ликвидатора Знак «За мужество и милосердие» 25 лет началу ликвидации аварии на ЧАЭС"
Для ликвидации последствий аварии была создана правительственная комиссия, председателем которой был назначен заместитель председателя Совета министров СССР Борис Евдокимович Щербина. От института, разработавшего реактор, в комиссию вошёл химик-неорганик академик В. А. Легасов. В итоге он проработал на месте аварии 4 месяца вместо положенных двух недель. Именно он рассчитал возможность применения и разработал состав смеси (боросодержащие вещества, свинец и доломиты), которой с самого первого дня забрасывали с вертолётов в зону реактора для предотвращения дальнейшего разогрева остатков реактора и уменьшения выбросов радиоактивных аэрозолей в атмосферу. Также именно он, выехав на бронетранспортёре непосредственно к реактору, определил, что показания датчиков нейтронов о продолжающейся атомной реакции недостоверны, так как они реагируют на мощнейшее гамма-излучение. Проведённый анализ соотношения изотопов йода показал, что на самом деле реакция остановилась.
Для координации работ были также созданы республиканские комиссии в Белорусской, Украинской ССР и в РСФСР, различные ведомственные комиссии и штабы. В 30-километровую зону вокруг ЧАЭС стали прибывать специалисты, командированные для проведения работ на аварийном блоке и вокруг него, а также воинские части, как регулярные, так и составленные из срочно призванных резервистов. Их всех позднее стали называть «ликвидаторами». Ликвидаторы работали в опасной зоне посменно: те, кто набрал максимально допустимую дозу радиации, уезжали, а на их место приезжали другие. Основная часть работ была выполнена в 1986—1987 годах, в них приняли участие примерно 240 000 человек. Общее количество ликвидаторов (включая последующие годы) составило около 600 000.
Во всех сберкассах страны был открыт «счёт 904» для пожертвований граждан, на который за полгода поступило 520 миллионов рублей. Среди жертвователей была Алла Пугачёва, давшая благотворительный концерт в Олимпийском и сольный концерт в Чернобыле для ликвидаторов.
В первые дни основные усилия были направлены на снижение радиоактивных выбросов из разрушенного реактора и предотвращение ещё более серьёзных последствий. Например, существовали опасения, что из-за остаточного тепловыделения в топливе, остающемся в реакторе, произойдёт расплавление активной зоны ядерного реактора. Расплавленное вещество могло бы проникнуть в затопленное помещение под реактором и вызвать ещё один взрыв с большим выбросом радиоактивности. Вода из этих помещений была откачана. Также были приняты меры для того, чтобы предотвратить проникновение расплава в грунт под реактором.
Затем начались работы по очистке территории и захоронению разрушенного реактора. Вокруг 4-го блока был построен бетонный «саркофаг» (т. н. объект «Укрытие»). Так как было принято решение о запуске 1-го, 2-го и 3-го блоков станции, радиоактивные обломки, разбросанные по территории АЭС и на крыше машинного зала были убраны внутрь саркофага или забетонированы. В помещениях первых трёх энергоблоков проводилась дезактивация. Строительство саркофага было завершено в ноябре 1986 года.
Работы над саркофагом не обошлись без человеческих жертв: 2 октября 1986 года возле 4-го энергоблока, зацепившись за подъемный кран, потерпел катастрофу вертолёт Ми-8, экипаж из 4 человек погиб.
По данным Российского государственного медико-дозиметрического регистра за прошедшие годы среди российских ликвидаторов с дозами облучения выше 100 мЗв (это около 60 тыс. человек) несколько десятков смертей могли быть связаны с облучением. Всего за 20 лет в этой группе от всех причин, не связанных с радиацией, умерло примерно 5 тысяч ликвидаторов.
Влияние аварии на здоровье людей
Несвоевременность, неполнота и противоречивость официальной информации о катастрофе породили множество независимых интерпретаций. Иногда жертвами трагедии считают не только граждан, умерших сразу после аварии, но и жителей прилежащих областей, которые вышли на первомайскую демонстрацию, не зная об аварии. При таком подсчёте, чернобыльская катастрофа значительно превосходит атомную бомбардировку Хиросимы по числу пострадавших.
Гринпис и Международная организация «Врачи против ядерной войны» утверждают, что в результате аварии только среди ликвидаторов умерли десятки тысяч человек, в Европе зафиксировано 10 000 случаев уродств у новорождённых, 10 000 случаев рака щитовидной железы и ожидается ещё 50 000.
Есть и противоположная точка зрения, ссылающаяся на 29 зарегистрированных случаев смерти от лучевой болезни в результате аварии (сотрудники станции и пожарные, принявшие на себя первый удар).
Разброс в официальных оценках меньше, хотя число пострадавших от Чернобыльской аварии можно определить лишь приблизительно. Кроме погибших работников АЭС и пожарных, к ним относят заболевших военнослужащих и гражданских лиц, привлекавшихся к ликвидации последствий аварии, и жителей районов, подвергшихся радиоактивному загрязнению. Определение того, какая часть заболеваний явилась следствием аварии — весьма сложная задача для медицины и статистики. Считается, что бо́льшая часть смертельных случаев, связанных с воздействием радиации, была или будет вызвана онкологическими заболеваниями.
Чернобыльский форум — организация, действующая под эгидой ООН, в том числе таких её организаций, как МАГАТЭ и ВОЗ, — в 2005 году опубликовала обширный доклад,[45] в котором проанализированы многочисленные научные исследования влияния факторов, связанных с аварией, на здоровье ликвидаторов и населения. Выводы, содержащиеся в этом докладе, а также в менее подробном обзоре «Чернобыльское наследие», опубликованном этой же организацией, значительно отличаются от приведённых выше оценок. Количество возможных жертв к настоящему времени и в ближайшие десятилетия оценивается в несколько тысяч человек. При этом подчёркивается, что это лишь оценка по порядку величины, так как из-за очень малых доз облучения, полученных большинством населения, эффект от воздействия радиации очень трудно выделить на фоне случайных колебаний заболеваемости и смертности и других факторов, не связанных напрямую с облучением. К таким факторам относится, например, снижение уровня жизни после распада СССР, которое привело к общему увеличению смертности и сокращению продолжительности жизни в трёх наиболее пострадавших от аварии странах, а также изменение возрастного состава населения в некоторых сильно загрязнённых районах (часть молодого населения уехала).
Также отмечается, что несколько повышенный уровень заболеваемости среди людей, не участвовавших непосредственно в ликвидации аварии, а переселённых из зоны отчуждения в другие места, не связан непосредственно с облучением (в этих категориях отмечается несколько повышенная заболеваемость сердечно-сосудистой системы, нарушения обмена веществ, нервные болезни и другие заболевания, не вызываемые облучением), а вызван стрессами, связанными с самим фактом переселения, потерей имущества, социальными проблемами, страхом перед радиацией.
Учитывая большое число людей, живущих в областях, пострадавших от радиоактивных загрязнений, даже небольшие отличия в оценке риска заболевания могут привести к большой разнице в оценке ожидаемого количества заболевших. Гринпис и ряд других общественных организаций настаивают на необходимости учитывать влияние аварии на здоровье населения и в других странах. Ещё более низкие дозы облучения затрудняют получение статистически достоверных результатов и делают такие оценки неточными.
Дальнейшая судьба станции
После аварии на 4-м энергоблоке работа электростанции была приостановлена из-за опасной радиационной обстановки. Однако уже в октябре 1986 года, после обширных работ по дезактивации территории и постройки «саркофага», 1-й и 2-й энергоблоки были вновь введены в строй; в декабре 1987 года возобновлена работа 3-го.
25 декабря 1995 года был подписан Меморандум о взаимопонимании между Правительством Украины и правительствами стран «большой семёрки» и Комиссией Европейского союза, согласно которому началась разработка программы полного закрытия станции к 2000 году. Решение об окончательной остановке энергоблока № 1 принято 30 ноября 1996 г., энергоблока № 2 — 15 марта 1999 г.
29 марта 2000 г. принято постановление Кабинета Министров Украины № 598 «О досрочном прекращении эксплуатации энергоблока № 3 и окончательном закрытии Чернобыльской АЭС». 15 декабря 2000 года в 13 часов 17 минут по приказу Президента Украины во время трансляции телемоста Чернобыльская АЭС — Национальный дворец «Украина» поворотом ключа аварийной защиты (АЗ-5) навсегда остановлен реактор энергоблока № 3 Чернобыльской АЭС. Станция прекратила генерацию электроэнергии.
Саркофаг, возведённый над четвёртым, взорвавшимся, энергоблоком постепенно разрушается. Опасность, в случае его обрушения, в основном определяется тем, как много радиоактивных веществ находится внутри него. По официальным данным, эта цифра достигает 95 % от того количества, которое было на момент аварии. Если эта оценка верна, то разрушение укрытия может привести к очень большим выбросам.
В марте 2004 года Европейский банк реконструкции и развития объявил тендер на проектирование, строительство и ввод в эксплуатацию нового саркофага для ЧАЭС. Победителем тендера в августе 2007 года была признана компания NOVARKA, совместное предприятие французских компаний Vinci Construction Grands Projets и BOUYGUES.
Сообщение отредактировал Коляс - Чт, 10.02.11, 18:47:42
Припять (укр. Прип'ять) — покинутый город в Украине, на берегу реки Припять в 3 км от ЧАЭС
Краткая информация: Город Припять
Статус: бывший город, покинут в 1986 году Страна: Украина Район: Иванковский район
Дата основания: 1970 Город с: 1979
Геогр. координаты: 51°24′ с. ш. 30°03′ в. д.
Время: UTC +2 поясн. / +3 летн. Почтовый индекс: 255614 (до 1986 г.).
История и развитие города
Основан 4 февраля 1970 года.
Статус города Припять получил в 1979 году на основании постановления Верховного Совета Украинской ССР № 1264/686.
Генеральным поводом основания города стало строительство и последующая эксплуатация одной из самых крупных в Европе атомной электростанции, Чернобыльской — градообразующего предприятия, которое и дало Припяти звание города атомщиков. Припять стал девятым в Советском Союзе атомоградом.
По последней проведённой до эвакуации переписи (в ноябре 1985 года), численность населения составляла 47 тысяч 500 человек, и включала более 25 национальностей. Ежегодный прирост населения составлял на тот момент свыше 1500 человек, среди которых около 800 были новорожденные, и приблизительно 500—600 человек — прибывшие на постоянное место жительства из разных регионов Советского Союза.
Проектная, изначально рассчитанная численность населения — 75—78 тысяч человек.
Расположенная рядом железнодорожная станция Янов на участке Чернигов — Овруч, пристань речного судоходства на реке Припять, автомобильные дороги превращали город Припять в удобный узел транспортных магистралей Полесья.
Население Припяти было эвакуировано 27 апреля 1986 года из-за Чернобыльской аварии. Для проживания обслуживающего персонала ЧАЭС был построен новый город-спутник Славутич в 50 км от АЭС. Сейчас Припять находится в Чернобыльской зоне отчуждения. В административном отношении городская территория входит в Иванковский район Киевской области.
Застройка
Параллельно своему прямому назначению города атомщиков, Припять также проектировалась как крупный перевалочный пункт, стоящий на перекрестке транспортных артерий.
Улицам и проспектам города присваивались, в основном, традиционные для советской эпохи названия. Помимо чисто идеологических проспекта Ленина, улиц Дружбы Народов и Героев Сталинграда, в Припяти были также и улица Набережная, проспект Строителей и Энтузиастов. В названии улицы Леси Украинки отразилась и национально-культурная сторона республики Украина. Не остался без внимания и главный повод основания Припяти — мирный атом. Благодаря этому в городе появилась улица Курчатова.
Припять — город с ярко выраженным центром. В центре города располагались административные здания (городской совет), объекты досуга, культуры и отдыха, универсальные продовольственные и промтоварные магазины, гостиничный комплекс.
Основной градостроительной идеей Припяти стал так называемый принцип «треугольной» застройки, разработанный группой московских архитекторов под руководством Николая Остоженко. Впоследствии, после предварительного утверждения, киевские архитекторы внесли в проект застройки собственные изменения, и этот компилированный вариант был окончательно согласован. Для того времени такая форма застройки была уникальна. Однако, параллельно с застройкой Припяти, эта же схема использовалась и при строительстве десятка других городов Советского Союза. В частности, отдельные микрорайоны Припяти имеют стопроцентное сходство с жилыми кварталами других атомоградов, Курчатова и Семипалатинска, Волгодонска и автограда Тольятти.
Для принципа «треугольной» застройки характерна смесь жилых домов стандартной этажности и домов повышенной этажности. Отличительной особенностью такого строительства является визуальный простор и свободные пространства между зданиями. В отличие от старых городов с тесными улочками и плотной застройкой, Припять, как и другие однотипные города, проектировалась с одной единственной целью — удобство проживания. Кроме сознательного увеличения свободного городского пространства, эта цель достигалась также и особым, равноугольным расположением улиц и проспектов. С помощью такого расположения городских магистралей город Припять и десять однотипных ему городов, должен был стать городом, в котором появление автомобильных пробок было невозможно.
Интересные факты
Припять — место действия компьютерной игры Call of Duty 4, Call of Duty: Modern Warfare 2 (спецоперация) и игрового мира S.T.A.L.K.E.R. В фильме «Жизнь после людей» город показывают как пример воздействия времени и природы на города после гибели человечества. Припять является одним из желанных мест посещений для туристов и учёных со всего мира.
Объявление об эвакуации из Припяти, 27 апреля 1986 года:
Внимание, внимание! Уважаемые товарищи! Городской совет народных депутатов сообщает, что в связи с аварией на Чернобыльской атомной электростанции в городе Припяти складывается неблагоприятная радиационная обстановка. Партийными и советскими органами, воинскими частями принимаются необходимые меры. Однако, с целью обеспечения полной безопасности людей, и, в первую очередь, детей, возникает необходимость провести временную эвакуацию жителей города в населенные пункты Киевской области. Для этого к каждому жилому дому сегодня, двадцать седьмого апреля, начиная с четырнадцати ноль ноль часов, будут поданы автобусы в сопровождении работников милиции и представителей горисполкома. Рекомендуется с собой взять документы, крайне необходимые вещи, а также, на первый случай, продукты питания. Руководителями предприятий и учреждений определен круг работников, которые остаются на месте для обеспечения нормального функционирования предприятий города. Все жилые дома на период эвакуации будут охраняться работниками милиции. Товарищи, временно оставляя свое жилье, не забудьте, пожалуйста, закрыть окна, выключить электрические и газовые приборы, перекрыть водопроводные краны. Просим соблюдать спокойствие, организованность и порядок при проведении временной эвакуации.
Доклад на тему: Дезоксирибонуклеиновая кислота(ДНК)
Дезоксирибонуклеиновая кислота(ДНК) — один из двух типов нуклеиновых кислот, обеспечивающих хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. Основная роль ДНК в клетках — долговременное хранение информации о структуре РНК и белков.
В клетках эукариотов (например, животных или растений) ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и пластидах). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеоид, прикреплена изнутри к клеточной мембране. У них и у низших эукариот (например, дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами. Кроме того, одно- или двухцепочечные молекулы ДНК могут образовывать геном ДНК-содержащих вирусов.
С химической точки зрения, ДНК — это длинная полимерная молекула, состоящая из повторяющихся блоков, нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы. Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы и фосфатной группы. В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей, ориентированных азотистыми основаниями друг к другу. Эта двухцепочечная молекула спирализована. В целом структура молекулы ДНК получила название «двойной спирали».
В ДНК встречается четыре вида азотистых оснований (аденин, гуанин, тимин и цитозин). Азотистые основания одной из цепей соединены с азотистыми основаниями другой цепи водородными связями согласно принципу комплементарности: аденин соединяется только с тимином, гуанин — только с цитозином. Последовательность нуклеотидов позволяет «кодировать» информацию о различных типах РНК, наиболее важными из которых являются информационные, или матричные (мРНК), рибосомальные (рРНК) и транспортные (тРНК). Все эти типы РНК синтезируются на матрице ДНК за счёт копирования последовательности ДНК в последовательность РНК, синтезируемой в процессе транскрипции и принимают участие в биосинтезе белков (процессе трансляции). Помимо кодирующих последовательностей, ДНК клеток содержит последовательности, выполняющие регуляторные и структурные функции. Кроме того, в геноме эукариот часто встречаются участки, принадлежащие «генетическим паразитам», например, транспозонам.
Расшифровка структуры ДНК (1953 г.) стала одним из поворотных моментов в истории биологии. За выдающийся вклад в это открытие Фрэнсису Крику, Джеймсу Уотсону, Морису Уилкинсу была присуждена Нобелевская премия по физиологии и медицине 1962 г.
История изучения
ДНК была открыта Иоганном Фридрихом Мишером в 1869 году. Вначале новое вещество получило название нуклеин, а позже, когда Мишер определил, что это вещество обладает кислотными свойствами, вещество получило название нуклеиновая кислота. Биологическая функция новооткрытого вещества была неясна, и долгое время ДНК считалась запасником фосфора в организме. Более того, даже в начале XX века многие биологи считали, что ДНК не имеет никакого отношения к передаче информации, поскольку строение молекулы, по их мнению, было слишком однообразным и не могло содержать закодированную информацию.
Постепенно было доказано, что именно ДНК, а не белки, как считалось раньше, является носителем генетической информации. Одно из первых решающих доказательств принесли эксперименты О. Эвери, Колина Мак-Леода и Маклин Мак-Карти (1944 г.) по трансформации бактерий. Им удалось показать, что за так называемую трансформацию (приобретение болезнетворных свойств безвредной культурой в результате добавления в неё мёртвых болезнетворных бактерий) отвечают выделенные из пневмококков ДНК. Эксперимент американских учёных Алфреда Херши и Марты Чейз (Эксперимент Херши—Чейз, 1952 г.) с помеченными радиоактивными изотопами белками и ДНК бактериофагов показали, что в заражённую клетку передаётся только нуклеиновая кислота фага, а новое поколение фага содержит такие же белки и нуклеиновую кислоту, как исходный фаг.
Вплоть до 50-х годов XX века точное строение ДНК, как и способ передачи наследственной информации, оставалось неизвестным. Хотя и было доподлинно известно, что ДНК состоит из нескольких цепочек, состоящих из нуклеотидов, никто не знал точно, сколько этих цепочек и как они соединены.
Структура двойной спирали ДНК была предложена Френсисом Криком и Джеймсом Уотсоном в 1953 году на основании рентгеноструктурных данных, полученных Морисом Уилкинсом и Розалинд Франклин, и «правил Чаргаффа», согласно которым в каждой молекуле ДНК соблюдаются строгие соотношения, связывающие между собой количество азотистых оснований разных типов[3]. Позже предложенная Уотсоном и Криком модель строения ДНК была доказана, а их работа отмечена Нобелевской премией по физиологии и медицине 1962 г. Среди лауреатов не было скончавшейся к тому времени Розалинды Франклин, так как премия не присуждается посмертно.
Структура молекулы
Дезоксирибонуклеиновая кислота (ДНК) представляет собой биополимер (полианион), мономером которого является нуклеотид.
Каждый нуклеотид состоит из остатка фосфорной кислоты присоединённого по 5'-положению к сахару дезоксирибозе, к которому также через гликозидную связь (C—N) по 1'-положению присоединено одно из четырёх азотистых оснований. Именно наличие характерного сахара и составляет одно из главных различий между ДНК и РНК, зафиксированное в названиях этих нуклеиновых кислот (в состав РНК входит сахар рибоза). Пример нуклеотида — аденозинмонофосфат — где основание, присоединённое к фосфату и рибозе, это аденин, показан на рисунке.
Исходя из структуры молекул, основания, входящие в состав нуклеотидов, разделяют на две группы: пурины (аденин [A] и гуанин [G]) образованы соединёнными пяти- и шестичленным гетероциклами; пиримидины (цитозин [C] и тимин [T]) — шестичленным гетероциклом.
В виде исключения, например, у бактериофага PBS1, в ДНК встречается пятый тип оснований — урацил ([U]), пиримидиновое основание, отличающееся от тимина отсутствием метильной группы на кольце, обычно заменяющее тимин в РНК.
Следует отметить, что тимин и урацил не так строго приурочены к ДНК и РНК соответственно, как это считалось ранее. Так, после синтеза некоторых молекул РНК значительное число урацилов в этих молекулах метилируется с помощью специальных ферментов, превращаясь в тимин. Это происходит в транспортных и рибосомальных РНК.
Двойная спираль
В зависимости от концентрации ионов и нуклеотидного состава молекулы, двойная спираль ДНК в живых организмах существует в разных формах. На рисунке представлены формы A, B и Z (слева направо)
Полимер ДНК обладает довольно сложной структурой. Нуклеотиды соединены между собой ковалентно в длинные полинуклеотидные цепи. Эти цепи в подавляющем большинстве случаев (кроме некоторых вирусов, обладающих одноцепочечными ДНК-геномами) попарно объединяются при помощи водородных связей в структуру, получившую название двойной спирали. Остов каждой из цепей состоит из чередующихся фосфатов и сахаров[11]. Фосфатные группы формируют фосфодиэфирные связи между третьим и пятым атомами углерода соседних молекул дезоксирибозы в результате взаимодействия между 3'-гидроксильной (3'—ОН) группой одной молекулы дезоксирибозы и 5'-фосфатной группой (5'—РО3) другой. Асимметричные концы цепи ДНК называются 3' (три прим) и 5' (пять прим). Полярность цепи играет важную роль при синтезе ДНК (удлинение цепи возможно только путём присоединения новых нуклеотидов к свободному 3'-концу).
Как уже было сказано выше, у подавляющего большинства живых организмов ДНК состоит не из одной, а из двух полинуклеотидных цепей. Эти две длинные цепи закручены одна вокруг другой в виде двойной спирали, стабилизированной водородными связями, образующимися между обращёнными друг к другу азотистыми основаниями входящих в неё цепей. В природе эта спираль, чаще всего, правозакрученная. Направления от 3'-конца к 5'-концу в двух цепях, из которых состоит молекула ДНК, противоположны (цепи «антипараллельны» друг другу).
Ширина двойной спирали составляет от 22 до 24 Å, или 2,2 — 2,4 нм, длина каждого нуклеотида 3,3 Å (0,33 нм). Подобно тому, как в винтовой лестнице сбоку можно увидеть ступеньки, на двойной спирали ДНК в промежутках между фосфатным остовом молекулы можно видеть рёбра оснований, кольца которых расположены в плоскости, перпендикулярной по отношению к продольной оси макромолекулы.
В двойной спирали различают малую (12 Å) и большую (22 Å) бороздки. Белки, например, факторы транскрипции, которые присоединяются к определённым последовательностям в двухцепочечной ДНК, обычно взаимодействуют с краями оснований в большой бороздке, где те более доступны.
Суперскрученность
Если взяться за концы верёвки и начать скручивать их в разные стороны, она становится короче и на верёвке образуются «супервитки». Так же может быть суперскручена и ДНК. В обычном состоянии цепочка ДНК делает один оборот на каждые 10,4 основания, но в суперскрученном состоянии спираль может быть свёрнута туже или расплетена. Выделяют два типа суперскручивания: положительное — в направлении нормальных витков, при котором основания расположены ближе друг к другу; и отрицательное — в противоположном направлении. В природе молекулы ДНК обычно находятся в отрицательном суперскручивании, которое вносится ферментами — топоизомеразами. Эти ферменты удаляют дополнительное скручивание, возникающее в ДНК в результате транскрипции и репликации.
Структуры на концах хромосом
На концах линейных хромосом находятся специализированные структуры ДНК, называемые теломерами. Основная функция этих участков — поддержание целостности концов хромосом. Теломеры также защищают концы ДНК от деградации экзонуклеазами и предотвращают активацию системы репарации. Поскольку обычные ДНК-полимеразы не могут реплицировать 3' концы хромосом, это делает специальный фермент — теломераза.
В клетках человека теломеры обычно представлены одноцепочечной ДНК и состоят из несколько тысяч повторяющихся единиц последовательности ТТАГГГ. Эти последовательности с высоким содержанием гуанина стабилизируют концы хромосом, формируя очень необычные структуры, называемые G-квадруплексами и состоящие из четырёх, а не двух взаимодействующих оснований. Четыре гуаниновых основания, все атомы которых находятся в одной плоскости, образуют пластинку, стабилизированную водородными связями между основаниями и хелатированием в центре неё иона металла (чаще всего калия). Эти пластинки располагаются стопкой друг над другом.
На концах хромосом могут образовываться и другие структуры: основания могут быть расположены в одной цепочке или в разных параллельных цепочках. Кроме этих «стопочных» структур теломеры формируют большие петлеобразные структуры, называемые Т-петли или теломерные петли. В них одноцепочечная ДНК располагается в виде широкого кольца, стабилизированного теломерными белками. В конце Т-петли одноцепочечная теломерная ДНК присоединяется к двухцепочечной ДНК, нарушая спаривание цепочек в этой молекуле и образуя связи с одной из цепей. Это трёхцепочечное образование называется Д-петля (от англ. displacement loop).
Биологические функции
ДНК является носителем генетической информации, записанной в виде последовательности нуклеотидов с помощью генетического кода. С молекулами ДНК связаны два основополагающих свойства живых организмов — наследственность и изменчивость. В ходе процесса, называемого репликацией ДНК, образуются две копии исходной цепочки, наследуемые дочерними клетками при делении, таким образом образовавшиеся клетки оказываются генетически идентичны исходной.
Генетическая информация реализуется при экспрессии генов в процессах транскрипции (синтеза молекул РНК на матрице ДНК) и трансляции (синтеза белков на матрице РНК).
Последовательность нуклеотидов «кодирует» информацию о различных типах РНК: информационных, или матричных (мРНК), рибосомальных (рРНК) и транспортных (тРНК). Все эти типы РНК синтезируются на основе ДНК в процессе транскрипции. Роль их в биосинтезе белков (процессе трансляции) различна. Информационная РНК содержит информацию о последовательности аминокислот в белке, рибосомальные РНК служат основой для рибосом (сложных нуклеопротеиновых комплексов, основная функция которых — сборка белка из отдельных аминокислот на основе иРНК), транспортные РНК доставляют аминокислоты к месту сборки белков — в активный центр рибосомы, «ползущей» по иРНК.
Структурные и регуляторные белки
Хорошо изученными примерами взаимодействия белков и ДНК, не зависящего от нуклеотидной последовательности ДНК, является взаимодействие со структурными белками. В клетке ДНК связана с этими белками, образуя компактную структуру, которая называется хроматин. У прокариот хроматин образован при присоединении к ДНК небольших щелочных белков — гистонов, менее упорядоченный хроматин прокариот содержит гистон-подобные белки. Гистоны формируют дискообразную белковую структуру — нуклеосому, вокруг каждой из которых вмещается два оборота спирали ДНК. Неспецифические связи между гистонами и ДНК образуются за счёт ионных связей щелочных аминокислот гистонов и кислотных остатков сахарофостфатного остова ДНК. Химические модификации этих аминокислот включают метилирование, фосфорилирование и ацетилирование. Эти химические модификации изменяют силу взаимодействия между ДНК и гистонами, влияя на доступность специфических последовательностей для факторов транскрипции и изменяя скорость транскрипции[56]. Другие белки в составе хроматина, которые присоединяются к неспецифическим последовательностям — белки с высокой подвижностью в гелях, которые ассоциируют большей частью с согнутой ДНК. Эти белки важны для образования в хроматине структур более высокого порядка. Особая группа белков, присоединяющихся к ДНК это белки, которые ассоциируют с одноцепочечной ДНК. Наиболее хорошо охарактеризованный белок этой группы у человека — репликационный белок А, без которого невозможно протекание большинства процессов, где расплетается двойная спираль, включая репликацию, рекомбинацию, и репарацию. Белки этой группы стабилизируют одноцепочечную ДНК и предотвращают формирование стеблей-петель или деградации нуклеазами.
В то же время другие белки узнают и присоединяются к специфическим последовательностям. Наиболее изученная группа таких белков — различные классы факторов транскрипции, то есть белки, регулирующие транскрипцию. Каждый из этих белков узнаёт свою последовательность, часто в промоторе и активирует или подавляет транскрипцию гена. Это происходит при ассоциации факторов транскрипции с РНК-полимеразой либо напрямую, либо через белки-посредники. Полимераза ассоциирует сначала с белками, а потом начинает транскрипцию[60]. В других случаях факторы транскрипции могут присоединяться к ферментам, которые модифицируют находящиеся на промоторах гистоны, что изменяет доступность ДНК для полимераз.
Так как специфические последовательности встречаются во многих местах генома, изменения в активности одного типа фактора транскрипции может изменить активность тысяч генов. Соответственно, эти белки часто регулируются в процессах ответа на изменения в окружающей среде, развития организма и дифференцировки клеток. Специфичность взаимодействия факторов транскрипции с ДНК обеспечивается многочисленными контактами между аминокислотами и основаниями ДНК, что позволяет им «читать» последовательность ДНК. Большинство контактов с основаниями происходит в главной бороздке, где основания более доступны.
Аминокислоты (аминокарбоновые кислоты) — органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы.
Аминокислоты могут рассматриваться как производные карбоновых кислот, в которых один или несколько атомов водорода заменены на аминные группы.
Общие химические свойства Аминокислоты могут проявлять как кислотные свойства, обусловленные наличием в их молекулах карбоксильной группы -COOH, так и основные свойства, обусловленные аминогруппой -NH2. Растворы аминокислот в воде благодаря этому обладают свойствами буферных растворов.
Цвиттер-ионом называют молекулу аминокислоты, в которой аминогруппа представлена в виде -NH3+, а карбоксигруппа — в виде -COO−. Такая молекула обладает значительным дипольным моментом при нулевом суммарном заряде. Именно из таких молекул построены кристаллы большинства аминокислот.
Некоторые аминокислоты имеют несколько аминогрупп и карбоксильных групп. Для этих аминокислот трудно говорить о каком-то конкретном цвиттер-ионе. Важной особенностью аминокислот является их способность к поликонденсации, приводящей к образованию полиамидов, в том числе пептидов, белков и нейлона-66. Изоэлектрической точкой аминокислоты называют значение pH, при котором максимальная доля молекул аминокислоты обладает нулевым зарядом. При таком pH аминокислота наименее подвижна в электрическом поле, и данное свойство можно использовать для разделения аминокислот, а также белков и пептидов. Аминокислоты обычно могут вступать во все реакции, характерные для карбоновых кислот и аминов.
Оптическая изомерия
Все входящие в состав живых организмов α-аминокислоты, кроме глицина, содержат асимметричный атом углерода (треонин и изолейцин содержат два асимметричных атома) и обладают оптической активностью. Почти все встречающиеся в природе α-аминокислоты имеют L-форму, и лишь L-аминокислоты включаются в состав белков, синтезируемых на рибосомах.
Данную особенность «живых» аминокислот весьма трудно объяснить, так как в реакциях между оптически неактивными веществами L и D-формы образуются в одинаковых количествах. Возможно, выбор одной из форм (L или D) — просто результат случайного стечения обстоятельств: первые молекулы, с которых смог начаться матричный синтез, обладали определенной формой, и именно к ним «приспособились» соответствующие ферменты.
D-аминокислоты в живых организмах
Оптические изомеры аминокислот претерпевают медленную самопроизвольную неферментативную рацемизацию. Например, в белке дентине (входит в состав зубов) L-аспартат переходит в D-форму со скоростью 0,1 % в год, что может быть использовано для определения возраста биологических объектов.
С развитием следового аминокислотного анализа D-аминокислоты были обнаружены сначала в составе клеточных стенок некоторых бактерий (1966), а затем и в тканях высших организмов. Так, D-аспартат и D-метионин предположительно являются нейромедиаторами у млекопитающих.
В состав некоторых пептидов входят D-аминокислоты, образующиеся при посттрансляционной модификации. Например, D-метионин и D-аланин входят в состав опиоидных гептапептидов кожи южноамериканских амфибий филломедуз (дерморфина, дермэнкефалина и делторфинов). Наличие D-аминокислот определяет высокую биологическую активность этих пептидов как анальгетиков.
Сходным образом образуются пептидные антибиотики бактериального происхождения, действующие против грамположительных бактерий — низин, субтилин и эпидермин.
Гораздо чаще D-аминокислоты входят в состав пептидов и их производных, образующихся путем нерибосомного синтеза в клетках грибов и бактерий. Видимо. в этом случае исходным материалом для синтеза служат также L-аминокислоты. которые изомеризуются одной из субъединиц ферментного комплекса, осуществляющего синтез пептида.
Моноаминомонокарбоновые: аланин, валин, глицин, изолейцин, лейцин Оксимоноаминокарбоновые: серин, треонин Моноаминодикарбоновые: аспарагиновая кислота, глутаминовая кислота, за счёт второй карбоксильной группы несут в растворе отрицательный заряд Амиды Моноаминодикарбоновых: аспарагин, глутамин Диаминомонокарбоновые: аргинин, гистидин, лизин, несут в растворе положительный заряд Серосодержащие: цистеин (цистин), метионин
Ароматические: фенилаланин, тирозин Гетероциклические: триптофан, гистидин, пролин (также входит в группу иминокислот) Иминокислоты: пролин (также входит в группу гетероциклических)
По аминоацил-тРНК-синтетазам Класс I
лейцин, изолейцин, валин, цистеин, метионин, аргинин, глутаминовая кислота, глутамин, тирозин Класс II
Антивещество — материя, состоящая из античастиц. По современным представлениям, силы, определяющие структуры материи (сильное взаимодействие, образующее ядра, и электромагнитное взаимодействие, образующее атомы и молекулы) совершенно одинаковы как для частиц, так и для античастиц. Это означает, что структура антивещества должна быть идентична структуре обычного вещества.
Отличие вещества и антивещества возможно только за счёт слабого взаимодействия, однако при обычных температурах слабые эффекты пренебрежимо малы.
Ведется довольно много рассуждений на тему того, почему наблюдаемая часть вселенной состоит почти исключительно из вещества и существуют ли другие места, заполненные, наоборот, практически полностью антивеществом; но на сегодняшний день наблюдаемая асимметрия вещества и антивещества во вселенной — одна из самых больших нерешенных задач физики. Предполагается, что столь сильная асимметрия возникла в первые доли секунды после Большого Взрыва.
Первым объектом, целиком составленным из античастиц, был синтезированный в 1965 году анти-дейтрон; затем были получены и более тяжёлые антиядра. В 1995 году в ЦЕРНе был синтезирован атом антиводорода, состоящий из позитрона и антипротона. В последние годы антиводород был получен в значительных количествах и было начато детальное изучение его свойств.
При взаимодействии вещества и антивещества их масса превращается в энергию. Такую реакцию называют аннигиляцией. Антивещество — лидер среди известных веществ по плотности энергии. Подсчитано, что при вступлении во взаимодействие 1 кг антиматерии и 1 кг материи выделится приблизительно 1,8×1017 джоулей энергии, что эквивалентно энергии выделяемой при взрыве 42,96 мегатонн тротила. Самое мощное ядерное устройство из когда-либо взрывавшихся на планете, «Царь-бомба» (вес ~ 20 т), соответствовало 57 мегатоннам. Следует отметить, что порядка 50 % энергии, выделившейся при аннигиляции (реакции пары нуклон-антинуклон), выделяется в форме нейтрино, которые практически не взаимодействуют с веществом.
В 2010 году физикам впервые удалось кратковременно поймать в «ловушку» атомы антивещества. Для этого ученые охлаждали облако, содержащее около 30 тысяч антипротонов, до температуры 200 кельвинов (минус 73,15 градуса Цельсия), и облако из 2 миллионов позитронов до температуры 40 кельвинов (минус 233,15 градуса Цельсия). Физики охлаждали антивещество в ловушке Пеннинга, встроенной внутрь ловушки Иоффе-Питчарда. В общей сложности было поймано 38 атомов.
Цена
Антивещество известно как самая дорогая субстанция на Земле, по оценкам НАСА 2006 года, производство миллиграмма позитронов стоило примерно 25 миллионов долларов США. По оценке 1999 года, один грамм антиводорода стоил 62.5 триллиона долларов. По оценке CERN 2001 года, производство миллиардной доли грамма антивещества (объем, использованный CERN в столкновениях частиц и античастиц в течение десяти лет) стоило несколько сотен миллионов швейцарских франков.
АЭС Фукусима-1 Местонахождение Япония, Окума Начало строительства 1966 Начало эксплуатации 26 марта 1971 Эксплуатирующая организация Токийская энергетическая компания Технические параметры Количество энергоблоков 6 Тип реакторов BWR Генерирующая мощность 4696 МВт
Фукусима-1 — атомная электростанция, расположенная в городе Окума в уезде Футаба префектуры Фукусима. По состоянию на февраль 2011 года её шесть энергоблоков, мощностью 4,7 ГВт, делали Фукусиму-1 одной из 25 крупнейших атомных электростанций в мире. Фукусима-1 — это первая АЭС, построенная и эксплуатируемая Токийской энергетической компанией (TEPCO). Расположенная в 11,5 км южнее АЭС Фукусима-2 также эксплуатируется компанией TEPCO.
Энергоблоки
Реакторные установки для первого, второго и шестого энергоблоков были сооружены американской корпорацией General Electric, для третьего и пятого — Toshiba, для четвёртого — Hitachi. Все шесть реакторов спроектированы в General Electric. Архитектурное проектирование для энергоблоков Дженерал Электрик выполнила компания Ebasco, все строительные конструкции возвела японская строительная компания Kajima (англ.)русск..Энергоблок Тип реакторов Мощность Начало строительства Энергетический пуск Ввод в эксплуатацию Закрытие Чистый Брутто Фукусима I-1 BWR-3 439 МВт 460 МВт 25.07.1967 17.11.1970 26.03.1971 по окончании ликвидации Фукусима I-2 BWR-4 760 МВт 784 МВт 09.06.1969 24.12.1973 18.07.1974 по окончании ликвидации Фукусима I-3 BWR-4 760 МВт 784 МВт 28.12.1970 26.10.1974 27.03.1976 31.03.2011 Фукусима I-4 BWR-4 760 МВт 784 МВт 12.02.1973 24.02.1978 12.10.1978 31.03.2011 Фукусима I-5 BWR-4 760 МВт 784 МВт 22.05.1972 22.09.1977 18.04.1978 Фукусима I-6 BWR-5 1067 МВт 1100 МВт 26.10.1973 04.05.1979 24.10.1979 Фукусима I-7 (план) ABWR 1325 МВт 1380 МВт Фукусима I-8 (план) ABWR 1325 МВт 1380 МВт
Авария на АЭС
11 марта 2011 года в результате сильнейшего за время наблюдения землетрясения в Японии произошла радиационная авария с локальными последствиями, по заявлению японских авторитетных лиц — 4-го уровня в момент начала аварии по шкале INES.В последствии степень тяжести аварии был повышена до 5 уровня, а затем до 7 уровня по шкале INES. Разрушения на атомной станции «Фукусима-1» на 16 марта 2011 г. На атомной электростанции «Фукусима-1» три работающих энергоблока были остановлены действием аварийной защиты, все аварийные системы сработали в штатном режиме. Однако спустя час было прервано электроснабжение (в том числе от резервных дизель-генераторов), предположительно из-за последовавшего за землетрясением цунами. Электроснабжение необходимо для охлаждения остановленных реакторов, которые активно выделяют тепло в течение существенного времени после остановки. Сразу после потери резервных дизель-генераторов владелец станции компания TEPCO заявила правительству Японии об аварийной ситуации. По состоянию на 18 апреля 2011 года ликвидация последствий аварии продолжается.
Сообщение отредактировал MAXIMUS41095 - Пт, 22.04.11, 11:23:32